Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 168: 112107, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677029

RESUMO

As part of the digestive system, the stomach plays a crucial role in the health and well-being of an organism. It produces acids and performs contractions that initiate the digestive process and begin the break-up of ingested food. Therefore, its mechanical properties are of interest. This study includes a detailed investigation of strains in the porcine stomach wall during passive organ filling. In addition, the observed strains were applied to tissue samples subjected to biaxial tensile tests. The results show inhomogeneous strains during filling, which tend to be higher in the circumferential direction (antrum: 13.2%, corpus: 22.0%, fundus: 67.8%), compared to the longitudinal direction (antrum: 4.8%, corpus: 24.7%, fundus: 50.0%) at a maximum filling of 3500 ml. Consequently, the fundus region experienced the greatest strain. In the biaxial tensile experiments, the corpus region appeared to be the stiffest, reaching nominal stress values above 400 kPa in the circumferential direction, whereas the other regions only reached stress levels of below 50 kPa in both directions for the investigated stretch range. Our findings gain new insight into stomach mechanics and provide valuable data for the development and validation of computational stomach models.


Assuntos
Estômago , Estresse Mecânico , Animais , Estômago/fisiologia , Suínos , Resistência à Tração/fisiologia , Fenômenos Biomecânicos , Modelos Biológicos
2.
PLoS One ; 18(9): e0286280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37733809

RESUMO

The ability of muscle to generate force depends on its architecture and health condition. MR-based diffusion tensor imaging of muscle (mDTI) is an innovative approach for showing the fiber arrangement for the whole muscle volume. For accurate calculations of fiber metrics, muscle segmentation prior to tractography is regarded as necessary. Since segmentation is known to be operator dependent, it is important to understand how segmentation affects tractography. The aim of this study was to compare the results of deterministic fiber tracking based on muscle models generated by two independent operators. In addition, this study compares the results with a segmentation-free approach. Fifteen subjects underwent mDTI of the right shoulder. The results showed that mDTI can be successfully applied to complex joints such as the human shoulder. Furthermore, operator segmentation did not influence the results of fiber tracking and fascicle length (FL), fiber volume (FV), fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) showed excellent intraclass correlation estimates (≥ 0.975). As an exploratory approach, the segmentation-free fiber tracking showed significant differences in terms of mean fascicle length. Based on these findings, we conclude that tractography is not sensitive to small deviations in muscle segmentation. Furthermore, it implies that mDTI and automatic segmentation approaches or even a segmentation-free analysis can be considered for evaluation of muscle architecture.


Assuntos
Imagem de Tensor de Difusão , Manguito Rotador , Humanos , Reprodutibilidade dos Testes , Anisotropia , Benchmarking
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...