Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; : OF1-OF12, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853438

RESUMO

Advances in linker payload technology and target selection have been at the forefront of recent improvements in antibody-drug conjugate (ADC) design, leading to several approvals over the last decade. In contrast, the potential of novel ADC technologies to enhance payload delivery to tumors is relatively underexplored. We demonstrate that incorporation of pH-dependent binding in the antibody component of a c-mesenchymal-epithelial transition (MET)-targeting ADC (MYTX-011) can overcome the requirement for high c-MET expression on tumors, an innovation that has the potential to benefit a broader population of patients with lower c-MET levels. MYTX-011 drove fourfold higher net internalization than a non-pH-engineered parent ADC in non-small cell lung cancer (NSCLC) cells and showed increased cytotoxicity against a panel of cell lines from various solid tumors. A single dose of MYTX-011 showed at least threefold higher efficacy than a benchmark ADC in mouse xenograft models of NSCLC ranging from low to high c-MET expression. Moreover, MYTX-011 showed improved pharmacokinetics over parent and benchmark ADCs. In a repeat dose toxicology study, MYTX-011 exhibited a toxicity profile similar to other monomethyl auristatin E-based ADCs. These results highlight the potential of MYTX-011 for treating a broader range of patients with NSCLC with c-MET expression than other c-MET-targeting ADCs. A first-in-human study is ongoing to determine the safety, tolerability, and preliminary efficacy of MYTX-011 in patients with NSCLC (NCT05652868).

2.
Mol Cancer Ther ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684230

RESUMO

Advances in linker payload technology and target selection have been at the forefront of recent improvements in antibody-drug conjugate (ADC) design, leading to several approvals over the last decade. In contrast, the potential of novel ADC technologies to enhance payload delivery to tumors is relatively underexplored. We demonstrate that incorporation of pH-dependent binding in the antibody component of a cMET targeting ADC (MYTX-011) can overcome the requirement for high cMET expression on tumors, an innovation that has the potential to benefit a broader population of patients with lower cMET levels. MYTX-011 drove four-fold higher net internalization than a non-pH engineered parent ADC in non-small cell lung cancer (NSCLC) cells and showed increased cytotoxicity against a panel of cell lines from various solid tumors. A single dose of MYTX-011 showed at least three-fold higher efficacy than a benchmark ADC in mouse xenograft models of NSCLC ranging from low to high cMET expression. Moreover, MYTX-011 showed improved pharmacokinetics over parent and benchmark ADCs. In a repeat dose toxicology study, MYTX-011 exhibited a toxicity profile similar to other MMAE-based ADCs. These results highlight the potential of MYTX-011 for treating a broader range of NSCLC patients with cMET expression than other cMET targeting ADCs. A first in human study is ongoing to determine the safety, tolerability, and preliminary efficacy of MYTX-011 in patients with NSCLC (NCT05652868).

3.
Vaccine ; 34(44): 5314-5320, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27642130

RESUMO

PURPOSE: GEN-003 is a candidate therapeutic HSV-2 vaccine containing a fragment of infected cell protein 4 (ICP4.2), a deletion mutant of glycoprotein D2 (gD2ΔTMR), and Matrix-M2 adjuvant. In a dose-ranging phase 1/2a clinical trial, immunization with GEN-003 reduced viral shedding and the percentage of reported herpetic lesion days. Here we examine the immune responses in the same trial, to characterize vaccine-related changes in antibody and cell-mediated immunity. METHODS: Participants with genital HSV-2 infection were randomized to 1 of 3 doses of GEN-003, antigens without adjuvant, or placebo. Subjects received 3 intramuscular doses, three weeks apart, and were monitored for viral shedding, lesions and immunogenicity. Antibody titers were measured by ELISA and neutralization assay in serum samples collected at baseline and 3weeks post each dose. T cell responses were assessed pre-immunization and 1week post each dose by IFN-γ ELISpot and intracellular cytokine staining. Blood was also collected at 6 and 12months to monitor durability of immune responses. RESULTS: Antibody and T cell responses increased with vaccination and were potentiated by adjuvant. Among the doses tested, the rank order of reduction in viral shedding follows the ranking of fold change from baseline in T cell responses. Some immune responses persisted up to 12months. CONCLUSION: All measures of immunity are increased by vaccination with GEN-003; however, a correlate of protection is yet to be defined.


Assuntos
Herpes Genital/imunologia , Herpes Genital/terapia , Vacinas contra o Vírus do Herpes Simples/imunologia , Vacinas contra o Vírus do Herpes Simples/uso terapêutico , Herpesvirus Humano 2/imunologia , Adjuvantes Imunológicos , Adolescente , Adulto , Anticorpos Antivirais/sangue , Relação Dose-Resposta Imunológica , ELISPOT , Feminino , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Humanos , Imunidade Celular , Imunoterapia , Interferon gama/biossíntese , Masculino , Glicoproteínas de Membrana/imunologia , Pessoa de Meia-Idade , Linfócitos T/imunologia , Proteínas da Matriz Viral/administração & dosagem , Proteínas da Matriz Viral/imunologia , Eliminação de Partículas Virais , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...