Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
EClinicalMedicine ; 72: 102598, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38633577

RESUMO

Background: Interstitial lung disease (ILD) is a common manifestation of idiopathic inflammatory myopathies (IIM) and a substantial contributor to hospitalisation, increased morbidity, and mortality. In-vivo evidence of ongoing tissue remodelling in IIM-ILD is scarce. We aimed to evaluate fibroblast activation in lungs of IIM-patients and control individuals using 68Ga-labelled inhibitor of Fibroblast-Activation-Protein (FAPi) based positronic emission tomography and computed tomography imaging (PET/CT). Methods: In this prospective observational pilot study, consecutive patients with IIM and participants without rheumatic conditions or ILD serving as a control group were recruited at the Medical University of Vienna, Austria, and underwent FAPi PET/CT imaging. Standard-of-care procedures including clinical examination, assessment of severity of dyspnoea, high-resolution computed tomography (HR-CT), and pulmonary function testing (PFT) were performed on all patients with IIM at baseline and for patients with IIM-ILD at follow-up of 12 months. Baseline pulmonary FAPi-uptake was assessed by the maximum (SUVmax) and mean (SUVmean) standardized uptake values (SUV) over the whole lung (wl). SUV was corrected for blood pool background activity and target-to-background ratios (TBR) were calculated. We compared pulmonary FAPi-uptake between patients with IIM-ILD and those without ILD, as well as controls, and correlated baseline FAP-uptake with standard diagnostic tools such as HR-CT and PFT. For predictive implications, we investigated whether patients with IIM and progressive ILD exhibited higher baseline FAPi-uptake compared to those with stable ILD. Metrics are reported as mean with standard deviation (±SD). Findings: Between November 16, 2021 and October 10, 2022, a total of 32 patients were enrolled in the study. Three participants from the control group were excluded due to cardiopulmonary disease. In individuals with IIM-ILD (n = 14), wlTBRmax and wlTBRmean were significantly increased as compared with both non-ILD-IIM patients (n = 5) and the control group (n = 16): wlTBRmax: 2.06 ± 1.04 vs. 1.04 ± 0.22 (p = 0.019) and 1.08 ± 0.19 (p = 0.0012) and wlTBRmean: 0.45 ± 0.19 vs. 0.26 ± 0.06 (p = 0.025) and 0.27 ± 0.07 (p = 0.0024). Similar values were observed in wlTBRmax or wlTBRmean between non-ILD IIM patients and the control group. Patients with progressive ILD displayed significantly enhanced wlTBRmax and wlTBRmean values at baseline compared to patients with stable ILD: wlTBRmax: 1.30 ± 0.31 vs. 2.63 ± 1.04 (p = 0.0084) and wlTBRmean: 0.32 ± 0.08 vs. 0.55 ± 0.19 (p = 0.021). Strong correlations were found between FAPi-uptake and disease extent on HR-CT (wlTBRmax: R = 0.42, p = 0.07; wlTBRmean: R = 0.56, p = 0.013) and severity of respiratory symptoms determined by the New York Heart Association (NYHA) classification tool (wlTBRmax: R = 0.52, p = 0.022; wlTBRmean: R = 0.59, p = 0.0073). Further, pulmonary FAPi-uptake showed inverse correlation with forced vital capacity (FVC) (wlTBRmax: R = -0.56, p = 0.012; wlTBRmean: R = -0.64, p = 0.0033) and diffusing capacity of the lungs for carbon monoxide (DLCO) (wlTBRmax: R = -0.52, p = 0.028; wlTBRmean: R = -0.68, p = 0.0017). Interpretation: Our study demonstrates higher fibroblast activation in patients with IIM-ILD compared to non-ILD patients and controls. Intensity of pulmonary FAPi accumulation was associated with progression of ILD. Considering that this study was carried out on a small population, FAPi PET/CT may serve as a useful non-invasive tool for risk stratification of lung disease in IIM. Funding: The Austrian Research Fund.

2.
J Autoimmun ; 144: 103185, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38428109

RESUMO

BACKGROUND: The significance of muscle biopsy as a diagnostic tool in idiopathic inflammatory myopathies (IIM) remains elusive. We aimed to determine the diagnostic weight that has been given to muscle biopsy in patients with suspected IIM, particularly in terms of clinical diagnosis and therapeutic decisions. MATERIAL AND METHODS: In this retrospective multicentric study, we analyzed muscle biopsy results of adult patients with suspected IIM referred to a tertiary center between January 1, 2007, and October 31, 2021. Information regarding referral department, suspected diagnosis, biopsy site, demographic, clinical, laboratory data, and imaging results were extracted. Statistical analyses included the level of agreement between suspected and histological diagnosis and calculation of diagnostic performance (positive and negative predictive values, positive and negative likelihood ratios, sensitivity, and specificity of muscle biopsy in relation to clinical diagnosis and/or treatment initiation). Performance was tested in different strata based on clinical pre-test probability. RESULTS: Among 758 muscle biopsies, IIM was histologically compatible in 357/758 (47.1%) cases. Proportion of IIM was higher if there was a solid clinical pre-test probability (64.3% vs. 42.4% vs. 48% for high, medium and low pre-test probability). Sensitivity and specificity of muscle biopsy were highest (82%) when the diagnosis by the clinician was used as outcome scenario. Negative predictive value was only moderate (between 63% and 80%) and lowest if autoantibodies were positive (35%). CONCLUSION: In patients with clinically suspected IIM, approximately 50% of biopsies revealed features indicative of IIM. Diagnostic performance of muscle biopsy was moderate to high depending on clinical pre-test probability.


Assuntos
Miosite , Adulto , Humanos , Estudos Retrospectivos , Miosite/diagnóstico , Miosite/patologia , Biópsia , Tomada de Decisão Clínica , Autoanticorpos , Músculos
4.
Z Rheumatol ; 83(2): 160-168, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38240817

RESUMO

OBJECTIVE: Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is a major driver of premature mortality in patients with rheumatoid arthritis (RA). Detection of RA-ILD is crucial but requires awareness among the treating physicians. To date, however, there is no international recommendation concerning screening for ILD in RA patients. METHODS: After a systematic literature review, the modified Delphi technique in combination with the nominal group technique was used to provide a Delphi consensus statement elaborated by an expert panel of pneumonologists, rheumatologists, and a radiologist. Based on the available evidence, several clusters of questions were defined and discussed until consent was reached. RESULTS: A screening algorithm for ILD in patients with RA based on clinical signs, respiratory symptoms, and risk factors has been developed. Further, the recommendations address diagnostic tools for RA-ILD and the follow-up of RA patients qualifying for ILD screening.


Assuntos
Artrite Reumatoide , Doenças Pulmonares Intersticiais , Humanos , Artrite Reumatoide/complicações , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/tratamento farmacológico , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/etiologia , Fatores de Risco
5.
Arthritis Rheumatol ; 76(4): 531-540, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37984422

RESUMO

OBJECTIVE: We analyzed the impact of amino acid (AA) availability on the inflammatory response in arthritis. METHODS: We stimulated rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLSs) with tumor necrosis factor (TNF) in the presence or absence of proteinogenic AAs and measured their response by QuantSeq 3' messenger RNA sequencing, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. Signal transduction events were determined by Western blot. We performed K/BxN serum transfer arthritis in mice receiving a normal and a low-protein diet and analyzed arthritis clinically and histologically. RESULTS: Deprivation of AAs decreased the expression of a specific subset of genes, including the chemokines CXCL10, CCL2, and CCL5 in TNF-stimulated FLSs. Mechanistically, the presence of AAs was required for the TNF-induced activation of an interferon regulatory factor 1 (IRF1)-STAT1 signaling circuit that drives the expression of chemotactic factors. The expression of IRF1 and the IRF1-dependent gene set in FLSs was highly correlated with the presence of inflammatory cells in human RA, emphasizing the important role of this AA-dependent pathway in inflammatory cell recruitment to the synovial tissue. Finally, we show that mice receiving a low-protein diet expressed less IRF1 in the inflamed synovium and consequently developed reduced clinical and histologic signs of arthritis. CONCLUSION: AA deprivation reduces the severity of arthritis by suppressing the expression of IRF1-STAT1-driven chemokines, which are crucial for leukocyte recruitment to the arthritic joint. Overall, our study provides novel insights into critical determinants of inflammatory arthritis and may pave the way for dietary intervention trials in RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Camundongos , Animais , Sinoviócitos/metabolismo , Aminoácidos/metabolismo , Artrite Reumatoide/genética , Fator de Necrose Tumoral alfa/metabolismo , Quimiocina CXCL10/metabolismo , Aminas/metabolismo , Fibroblastos/metabolismo , Leucócitos/metabolismo , Leucócitos/patologia , Células Cultivadas
6.
Ann Rheum Dis ; 83(4): 409-416, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38123338

RESUMO

The Advances in Targeted Therapies meets annually, convening experts in the field of rheumatology to both provide scientific updates and identify existing scientific gaps within the field. To review the major unmet scientific needs in rheumatology. The 23rd annual Advances in Targeted Therapies meeting convened with more than 100 international basic scientists and clinical researchers in rheumatology, immunology, infectious diseases, epidemiology, molecular biology and other specialties relating to all aspects of immune-mediated inflammatory diseases. We held breakout sessions in five rheumatological disease-specific groups including: rheumatoid arthritis (RA), psoriatic arthritis (PsA), axial spondyloarthritis (axSpa), systemic lupus erythematosus (SLE), systemic sclerosis (SSc) and vasculitis, and osteoarthritis (OA). In each group, experts were asked to identify and prioritise current unmet needs in clinical and translational research. An overarching theme across all disease states is the continued need for clinical trial design innovation with regard to therapeutics, endpoint and disease endotypes. Within RA, unmet needs comprise molecular classification of disease pathogenesis and activity, pre-/early RA strategies, more refined pain profiling and innovative trials designs to deliver on precision medicine. Continued scientific questions within PsA include evaluating the genetic, immunophenotypic, clinical signatures that predict development of PsA in patients with psoriasis, and the evaluation of combination therapies for difficult-to-treat disease. For axSpA, there continues to be the need to understand the role of interleukin-23 (IL-23) in pathogenesis and the genetic relationship of the IL-23-receptor polymorphism with other related systemic inflammatory diseases (eg, inflammatory bowel disease). A major unmet need in the OA field remains the need to develop the ability to reliably phenotype and stratify patients for inclusion in clinical trials. SLE experts identified a number of unmet needs within clinical trial design including the need for allowing endpoints that reflect pharmacodynamic/functional outcomes (eg, inhibition of type I interferon pathway activation; changes in urine biomarkers). Lastly, within SSc and vasculitis, there is a lack of biomarkers that predict response or disease progression, and that allow patients to be stratified for therapies. There remains a strong need to innovate clinical trial design, to identify systemic and tissue-level biomarkers that predict progression or response to therapy, endotype disease, and to continue developing therapies and therapeutic strategies for those with treatment-refractory disease. This document, based on expert consensus, should provide a roadmap for prioritising scientific endeavour in the field of rheumatology.


Assuntos
Artrite Psoriásica , Artrite Reumatoide , Espondiloartrite Axial , Lúpus Eritematoso Sistêmico , Osteoartrite , Reumatologia , Vasculite , Humanos , Artrite Psoriásica/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Lúpus Eritematoso Sistêmico/terapia , Biomarcadores , Interleucina-23
7.
Ann Rheum Dis ; 82(9): 1142-1152, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37344156

RESUMO

INTRODUCTION: Structural reorganisation of the synovium with expansion of fibroblast-like synoviocytes (FLS) and influx of immune cells is a hallmark of rheumatoid arthritis (RA). Activated FLS are increasingly recognised as a critical component driving synovial tissue remodelling by interacting with immune cells resulting in distinct synovial pathotypes of RA. METHODS: Automated high-content fluorescence microscopy of co-cultured cytokine-activated FLS and autologous peripheral CD4+ T cells from patients with RA was established to quantify cell-cell interactions. Phenotypic profiling of cytokine-treated FLS and co-cultured T cells was done by flow cytometry and RNA-Seq, which were integrated with publicly available transcriptomic data from patients with different histological synovial pathotypes. Computational prediction and knock-down experiments were performed in FLS to identify adhesion molecules for cell-cell interaction. RESULTS: Cytokine stimulation, especially with TNF-α, led to enhanced FLS-T cell interaction resulting in cell-cell contact-dependent activation, proliferation and differentiation of T cells. Signatures of cytokine-activated FLS were significantly enriched in RA synovial tissues defined as lymphoid-rich or leucocyte-rich pathotypes, with the most prominent effects for TNF-α. FLS cytokine signatures correlated with the number of infiltrating CD4+ T cells in synovial tissue of patients with RA. Ligand-receptor pair interaction analysis identified ICAM1 on FLS as an important mediator in TNF-mediated FLS-T cell interaction. Both, ICAM1 and its receptors were overexpressed in TNF-treated FLS and co-cultured T cells. Knock-down of ICAM1 in FLS resulted in reduced TNF-mediated FLS-T cell interaction. CONCLUSION: Our study highlights the role of cytokine-activated FLS in orchestrating inflammation-associated synovial pathotypes providing novel insights into disease mechanisms of RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Citocinas , Fator de Necrose Tumoral alfa/farmacologia , Membrana Sinovial/patologia , Sinoviócitos/patologia , Fibroblastos/patologia , Células Cultivadas
8.
RMD Open ; 9(1)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36972928

RESUMO

OBJECTIVE: To characterise associations between individual nailfold capillary aberrations with autoantibodies in a cross-sectional study on children and adults with Raynaud's phenomenon (RP). METHODS: Consecutive children and adults with RP and without previously known connective tissue disease (CTD) systemically underwent nailfold capillaroscopy and laboratory tests for the presence of antinuclear antibodies (ANA). The prevalence of individual nailfold capillary aberrations and ANA was assessed, and the associations between individual nailfold capillary aberrations and ANA were analysed separately in children and adolescents. RESULTS: In total, 113 children (median age 15 years) and 2858 adults (median age 48 years) with RP and without previously known CTD were assessed. At least one nailfold capillary aberration was detected in 72 (64%) of included children and in 2154 (75%) of included adults with RP (children vs adults p<0.05). An ANA titre ≥1:80, ≥1:160 or≥1:320 was observed in 29%, 21% or 16% of included children, and in 37%, 27% or 24% of screened adults, respectively. While the occurrence of individual nailfold capillary aberrations was related to the presence of an ANA titre of ≥1:80 in adults (reduced capillary density, avascular fields, haemorrhages, oedema, ramifications, dilations and giant capillaries: each p<0.001), no comparable association between nailfold capillary aberrations and ANA was observed in children with RP without previously known CTD. CONCLUSION: In contrast to adults, the association between nailfold capillary aberrations and ANA might be less pronounced in children. Further studies are warranted to validate these observations in children with RP.


Assuntos
Doenças do Tecido Conjuntivo , Doença de Raynaud , Adolescente , Humanos , Adulto , Criança , Pessoa de Meia-Idade , Autoanticorpos , Capilares , Estudos Transversais , Unhas/irrigação sanguínea , Doença de Raynaud/diagnóstico , Doença de Raynaud/etiologia , Anticorpos Antinucleares
9.
J Clin Med ; 11(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142955

RESUMO

Objective: Conventional immunosuppressive and advanced targeted therapies, including biological medications and small molecules, are a mainstay in the treatment of immune-mediated inflammatory diseases (IMID). However, the COVID-19 pandemic caused concerns over these drugs' safety regarding the risk and severity of SARS-CoV-2 infection. Thus, we aimed to assess the impact of the COVID-19 pandemic on the initiation of these treatments in 2020. Study Design and Setting: We conducted a population-based retrospective analysis of real-world data of the Austrian health insurance funds on the initiation of conventional immunosuppressive and advanced targeted therapies. The primary objective was to compare the initiation of these medications in the year 2020 with the period 2017 to 2019. Initiation rates of medication were calculated by comparing a certain unit of time with an average of the previous ones. Results: 95,573 patients were included. During the first lockdown in Austria in April 2020, there was a significant decrease in the initiations of conventional immunosuppressives and advanced targeted therapies compared to previous years (p < 0.0001). From May 2020 onwards, numbers rapidly re-achieved pre-lockdown levels despite higher SARS-CoV-2 infection rates and subsequent lockdown periods at the end of 2020. Independent from the impact of the COVID-19 pandemic, a continuous increase of starts of advanced targeted therapies and a continuous decrease of conventional immunosuppressants during the observation period were observed. Conclusions: In IMID patients, the COVID-19 pandemic led to a significant decrease of newly started conventional immunosuppressive and advanced targeted therapies only during the first lockdown in Austria.

10.
BMC Rheumatol ; 6(1): 42, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35821079

RESUMO

BACKGROUND: Autoimmune disease following COVID-19 has been studied intensely since the beginning of the pandemic. Growing evidence indicates that SARS-CoV-2 infection, by virtue of molecular mimicry can lead to an antigen-mediated cross-reaction promoting the development of a plethora of autoimmune spectrum diseases involving lungs and extrapulmonary tissues alike. In both COVID-19 and autoimmune disease, the immune self-tolerance breaks, leading to an overreaction of the immune system with production of a variety of autoantibodies, sharing similarities in clinical manifestation, laboratory, imaging, and pathology findings. Anti-Melanoma Differentiation-Associated gene 5 dermatomyositis (anti-MDA5 DM) comprises a rare subtype of systemic inflammatory myopathies associated with characteristic cutaneous features and life-threatening rapidly progressive interstitial lung disease (RP-ILD). The production of anti-MDA5 autoantibodies was proposed to be triggered by viral infections. CASE PRESENTATION: A 20-year-old male patient with polyarthritis, fatigue and exertional dyspnea was referred to our department. An elevated anti-MDA5 autoantibody titer, myositis on MRI, ground glass opacifications on lung CT and histological features of Wong-type dermatomyositis were confirmed, suggesting the diagnosis of an anti-MDA5 DM. Amid further diagnostic procedures, a serologic proof of a recent SARS-CoV-2 infection emerged. Subsequently, the patient deteriorated into a fulminant respiratory failure and an urgent lung transplantation was performed, leading to remission ever since (i.e. 12 months as of now). CONCLUSIONS: We report a unique case of a patient with a new-onset anti-MDA5 DM with fulminant ARDS emerging in a post-infectious stage of COVID-19, who underwent a successful lung transplantation and achieved remission. Given the high mortality of anti-MDA5 DM associated RP-ILD, we would like to highlight that the timely recognition of this condition and urgent therapy initiation are of utmost importance.

11.
Rheumatology (Oxford) ; 61(11): 4535-4546, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35258553

RESUMO

OBJECTIVES: TNF-induced activation of fibroblast-like synoviocytes (FLS) is a critical determinant for synovial inflammation and joint destruction in RA. The detrimental role of TNF-receptor 1 (TNFR1) has thoroughly been characterized. The contributions of TNFR2, however, are largely unknown. This study was performed to delineate the role of TNFR2 in human FLS activation. METHODS: TNFR2 expression in synovial tissue samples was determined by immunohistochemistry. Expression of TNFR2 was silenced using RNAi or CRISPR/Cas9 technologies. Global transcriptional changes were determined by RNA-seq. QPCR, ELISA and immunoblotting were used to validate RNA-seq results and to uncover pathways operating downstream of TNFR2 in FLS. RESULTS: TNFR2 expression was increased in RA when compared with OA synovial tissues. In particular, RA-FLS demonstrated higher levels of TNFR2 when compared with OA-FLS. TNFR2 expression in RA-FLS correlated with RA disease activity, synovial T- and B-cell infiltration. TNF and IL1ß were identified as inflammatory mediators that upregulate TNFR2 in RA-FLS. Silencing of TNFR2 in RA-FLS markedly diminished the TNF-induced expression of inflammatory cytokines and chemokines, including CXCR3-binding chemokines and the B-cell activating factor TNFSF13B. Immunobiochemical analyses revealed that TNFR2-mediated expression of inflammatory mediators critically depends on STAT1. CONCLUSION: Our results define a critical role for TNFR2 in FLS-driven inflammation and unfold its participation in the unresolved course of synovial inflammation in RA.


Assuntos
Artrite Reumatoide , Receptores Tipo II do Fator de Necrose Tumoral , Sinoviócitos , Humanos , Artrite Reumatoide/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo
12.
Lab Chip ; 21(21): 4128-4143, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34505620

RESUMO

Rheumatoid arthritis is characterised by a progressive, intermittent inflammation at the synovial membrane, which ultimately leads to the destruction of the synovial joint. The synovial membrane as the joint capsule's inner layer is lined with fibroblast-like synoviocytes that are the key player supporting persistent arthritis leading to bone erosion and cartilage destruction. While microfluidic models that model molecular aspects of bone erosion between bone-derived cells and synoviocytes have been established, RA's synovial-chondral axis has not yet been realised using a microfluidic 3D model based on human patient in vitro cultures. Consequently, we established a chip-based three-dimensional tissue coculture model that simulates the reciprocal cross talk between individual synovial and chondral organoids. When co-cultivated with synovial organoids, we could demonstrate that chondral organoids induce a higher degree of cartilage physiology and architecture and show differential cytokine response compared to their respective monocultures highlighting the importance of reciprocal tissue-level cross talk in the modelling of arthritic diseases.


Assuntos
Artrite Reumatoide , Membrana Sinovial , Técnicas de Cocultura , Citocinas , Fibroblastos , Humanos
13.
Nat Commun ; 12(1): 3624, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131132

RESUMO

The LIM and SH3 domain protein 1 (Lasp1) was originally cloned from metastatic breast cancer and characterised as an adaptor molecule associated with tumourigenesis and cancer cell invasion. However, the regulation of Lasp1 and its function in the aggressive transformation of cells is unclear. Here we use integrative epigenomic profiling of invasive fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) and from mouse models of the disease, to identify Lasp1 as an epigenomically co-modified region in chronic inflammatory arthritis and a functionally important binding partner of the Cadherin-11/ß-Catenin complex in zipper-like cell-to-cell contacts. In vitro, loss or blocking of Lasp1 alters pathological tissue formation, migratory behaviour and platelet-derived growth factor response of arthritic FLS. In arthritic human TNF transgenic mice, deletion of Lasp1 reduces arthritic joint destruction. Therefore, we show a function of Lasp1 in cellular junction formation and inflammatory tissue remodelling and identify Lasp1 as a potential target for treating inflammatory joint disorders associated with aggressive cellular transformation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Junções Aderentes/metabolismo , Artrite/metabolismo , Transformação Celular Neoplásica/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Artrite/patologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Caderinas/metabolismo , Proteínas do Citoesqueleto/genética , Feminino , Proteínas de Homeodomínio , Proteínas com Domínio LIM/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos , beta Catenina/metabolismo
15.
Immunity ; 54(5): 1002-1021.e10, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33761330

RESUMO

Arthritis typically involves recurrence and progressive worsening at specific predilection sites, but the checkpoints between remission and persistence remain unknown. Here, we defined the molecular and cellular mechanisms of this inflammation-mediated tissue priming. Re-exposure to inflammatory stimuli caused aggravated arthritis in rodent models. Tissue priming developed locally and independently of adaptive immunity. Repeatedly stimulated primed synovial fibroblasts (SFs) exhibited enhanced metabolic activity inducing functional changes with intensified migration, invasiveness and osteoclastogenesis. Meanwhile, human SF from patients with established arthritis displayed a similar primed phenotype. Transcriptomic and epigenomic analyses as well as genetic and pharmacological targeting demonstrated that inflammatory tissue priming relies on intracellular complement C3- and C3a receptor-activation and downstream mammalian target of rapamycin- and hypoxia-inducible factor 1α-mediated metabolic SF invigoration that prevents activation-induced senescence, enhances NLRP3 inflammasome activity, and in consequence sensitizes tissue for inflammation. Our study suggests possibilities for therapeutic intervention abrogating tissue priming without immunosuppression.


Assuntos
Proteínas do Sistema Complemento/imunologia , Fibroblastos/imunologia , Inflamação/imunologia , Membrana Sinovial/imunologia , Imunidade Adaptativa/imunologia , Animais , Artrite Reumatoide/imunologia , Linhagem Celular , Cães , Humanos , Mediadores da Inflamação/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Ratos Wistar , Transdução de Sinais/imunologia
16.
Lab Chip ; 20(8): 1461-1471, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32219235

RESUMO

Rheumatoid arthritis is a chronic, systemic joint disease in which an autoimmune response translates into an inflammatory attack resulting in joint damage, disability and decreased quality of life. Despite recent introduction of therapeutic agents such as anti-TNFα, even the best current therapies fail to achieve disease remission in most arthritis patients. Therefore, research into the mechanisms governing the destructive inflammatory process in rheumatoid arthritis is of great importance and may reveal novel strategies for the therapeutic interventions. To gain deeper insight into its pathogensis, we have developed for the first time a three-dimensional synovium-on-a-chip system in order to monitor the onset and progression of inflammatory synovial tissue responses. In our study, patient-derived primary synovial organoids are cultivated on a single chip platform containing embedded organic-photodetector arrays for over a week in the absence and presence of tumor-necrosis-factor. Using a label-free and non-invasive optical light-scatter biosensing strategy inflammation-induced 3D tissue-level architectural changes were already detected after two days. We demonstrate that the integration of complex human synovial organ cultures in a lab-on-a-chip provides reproducible and reliable information on how systemic stress factors affect synovial tissue architectures.


Assuntos
Artrite Reumatoide , Dispositivos Lab-On-A-Chip , Humanos , Inflamação , Qualidade de Vida , Membrana Sinovial
17.
Exp Mol Med ; 51(7): 1-11, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285419

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by persistent synovial inflammation. The major drivers of synovial inflammation are cytokines and chemokines. Among these molecules, TNF activates fibroblast-like synoviocytes (FLSs), which leads to the production of inflammatory mediators. Here, we show that TNF regulates the expression of the transcription factor interferon regulatory factor 1 (IRF1) in human FLSs as well as in a TNF transgenic arthritis mouse model. Transcriptomic analyses of IRF1-deficient, TNF-stimulated FLSs define the interferon (IFN) pathway as a major target of IRF1. IRF1 expression is associated with the expression of IFNß, which leads to the activation of the JAK-STAT pathway. Blocking the JAK-STAT pathway with the Janus kinase inhibitor (JAKinib) baricitinib or tofacitinib reduces the expression of IFN-regulated genes (IRGs) in TNF-activated FLSs. Therefore, we conclude that TNF induces a distinct inflammatory cascade, in which IRGs are key elements, in FLSs. The IFN-signature might be a promising biomarker for the efficient and personalized use of new treatment strategies for RA, such as JAKinibs.


Assuntos
Artrite Reumatoide/imunologia , Fator Regulador 1 de Interferon/metabolismo , Interferons/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Azetidinas/uso terapêutico , Biomarcadores/metabolismo , Feminino , Expressão Gênica , Humanos , Inflamação , Fator Regulador 1 de Interferon/genética , Interferons/genética , Inibidores de Janus Quinases/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Piperidinas/uso terapêutico , Purinas , Pirazóis , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Sulfonamidas/uso terapêutico , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Sinoviócitos/metabolismo , Fator de Necrose Tumoral alfa/genética
18.
Nature ; 566(7744): 344-349, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30700907

RESUMO

Fibroblasts are polymorphic cells with pleiotropic roles in organ morphogenesis, tissue homeostasis and immune responses. In fibrotic diseases, fibroblasts synthesize abundant amounts of extracellular matrix, which induces scarring and organ failure. By contrast, a hallmark feature of fibroblasts in arthritis is degradation of the extracellular matrix because of the release of metalloproteinases and degrading enzymes, and subsequent tissue destruction. The mechanisms that drive these functionally opposing pro-fibrotic and pro-inflammatory phenotypes of fibroblasts remain unknown. Here we identify the transcription factor PU.1 as an essential regulator of the pro-fibrotic gene expression program. The interplay between transcriptional and post-transcriptional mechanisms that normally control the expression of PU.1 expression is perturbed in various fibrotic diseases, resulting in the upregulation of PU.1, induction of fibrosis-associated gene sets and a phenotypic switch in extracellular matrix-producing pro-fibrotic fibroblasts. By contrast, pharmacological and genetic inactivation of PU.1 disrupts the fibrotic network and enables reprogramming of fibrotic fibroblasts into resting fibroblasts, leading to regression of fibrosis in several organs.


Assuntos
Diferenciação Celular/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/genética , Fibrose/patologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Sequência de Bases , Epigênese Genética , Feminino , Humanos , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Transativadores/antagonistas & inibidores
19.
Lab Invest ; 99(5): 648-658, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30679758

RESUMO

Fibroblast-like synoviocytes (FLS) are major contributors to joint inflammation in rheumatoid arthritis (RA). Forkhead box O 3 (FOXO3) perturbations in immune cells are increasingly linked to RA pathogenesis. Here, we show that FOXO3 is distinctly inactivated/phosphorylated in the FLS of rheumatoid synovitis. In vitro, stimulation of FLS with tumor necrosis factor-alpha α (TNFα) induced a rapid and sustained inactivation of FOXO3. mRNA profiling revealed that the inactivation of FOXO3 is important for the sustained pro-inflammatory interferon response to TNFα (CXCL9, CXCL10, CXCL11, and TNFSF18). Mechanistically, our studies demonstrate that the inactivation of FOXO3 results from TNF-induced downregulation of phosphoinositide-3-kinase-interacting protein 1 (PIK3IP1). Thus, we identified FOXO3 and its modulator PIK3IP1 as a critical regulatory circuit for the inflammatory response of the resident mesenchymal cells to TNFα and contribute insight into how the synovial tissue brings about chronic inflammation that is driven by TNFα.


Assuntos
Fibroblastos/efeitos dos fármacos , Proteína Forkhead Box O3/genética , Inflamação/genética , Sinoviócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Células Cultivadas , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteína Forkhead Box O3/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Sinoviócitos/citologia , Sinoviócitos/metabolismo
20.
Vaccine ; 36(32 Pt B): 4875-4879, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980390

RESUMO

BACKGROUND: Patients with inflammatory rheumatic diseases are at higher risk for influenza and current guidelines recommend vaccination for this group of patients. The aim of this study was to evaluate the vaccination coverage and predictors for influenza vaccination among patients with inflammatory rheumatic diseases. METHODS: This survey was conducted at the outpatient rheumatology clinic at the Medical University of Vienna between July and October 2017. All patients diagnosed with an inflammatory rheumatic disease and receiving immunosuppressive therapy were asked to complete a questionnaire about their influenza vaccination status for 2016/17. RESULTS: 490 patients with rheumatic diseases completed a questionnaire (33% male, mean age 55.3 years). The influenza vaccination rate for the previous season was 25.3% (n = 124/490). Predictors for a positive influenza vaccination status were higher age (Adjusted Odds Ratio 5.0, 95% Confidence Interval 2.4-10.4) and treatment with biological disease-modifying antirheumatic drugs (AOR 2.0, 95% CI 1.3-3.1). Patients who received a recommendation for influenza vaccination by their general practitioner were significantly more likely to be vaccinated than those who did not (57% vs. 15%, AOR 6.6, 95% CI 4.1-10.8); even more so if they received a recommendation by their rheumatologist (62% vs. 19%, AOR 9.0, 95% CI 4.9-16.5). The main reasons for patients to decline influenza vaccination were fear of side effects (36%), concerns that vaccination might not be effective due to their immunosuppressed condition (38%) or that it might worsen the rheumatic disease (20%). CONCLUSIONS: A moderate influenza vaccination rate of 25.3% was detected among patients with inflammatory rheumatic diseases. Recommendation of the influenza vaccine by a physician exerts the most effective impact on a positive vaccination status.


Assuntos
Vacinas contra Influenza/uso terapêutico , Doenças Reumáticas/prevenção & controle , Humanos , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Aceitação pelo Paciente de Cuidados de Saúde , Doenças Reumáticas/imunologia , Inquéritos e Questionários , Vacinação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...