Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 55(5): 2054-60, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21357304

RESUMO

Resistance to human immunodeficiency virus type 1 (HIV-1) represents a significant problem in the design of novel therapeutics and the management of treatment regimens in infected persons. Resistance profiles can be elucidated by defining modifications to the viral genome conferred upon exposure to novel nucleoside reverse transcriptase (RT) inhibitors (NRTI). In vitro testing of HIV-1LAI-infected primary human lymphocytes treated with ß-D-2',3'-dideoxy-2',3'-didehydro-5-fluorocytidine (DFC; Dexelvucitabine; Reverset) produced a novel deletion of AGT at codon 68 (S68Δ) alone and in combination with K65R that differentially affects drug response. Dual-approach clone techniques utilizing TOPO cloning and pyrosequencing confirmed the novel S68Δ in the HIV-1 genome. The S68Δ HIV-1 RT was phenotyped against various antiviral agents in a heteropolymeric DNA polymerase assay and in human lymphocytes. Drug susceptibility results indicate that the S68Δ displayed a 10- to 30-fold increase in resistance to DFC, lamivudine, emtricitabine, tenofovir, abacavir, and amdoxovir and modest resistance to stavudine, ß-d-2',3'-oxa-5-fluorocytidine, or 9-(ß-D-1,3-dioxolan-4-yl)guanine and remained susceptible to 3'-azido-3'-deoxythymidine, 2',3'-dideoxyinosine (ddI), 1-(ß-D-dioxolane)thymine (DOT) and lopinavir. Modeling revealed a central role for S68 in affecting conformation of the ß3-ß4 finger region and provides a rational for the selective resistance. These data indicate that the novel S68Δ is a previously unrecognized deletion that may represent an important factor in NRTI multidrug resistance treatment strategies.


Assuntos
Transcriptase Reversa do HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Inibidores da Transcriptase Reversa/farmacologia , Células Cultivadas , Farmacorresistência Viral/genética , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , HIV-1/genética , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Secundária de Proteína
2.
RNA ; 13(8): 1317-27, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17556711

RESUMO

Trans-splicing has been used to repair mutant RNA transcripts via competition for the spliceosome using pre-trans-splicing molecules, or "PTMs." Previous studies have demonstrated that functional PTMs can be designed for either 3'- or 5'-exon replacement, with a vast majority of the work to date focusing on repair of mutations within internal exons and via 3'-exon replacement. Here, we describe the first use of trans-splicing to target the first exon and intron of a therapeutically relevant gene and repair the mutant RNA by 5'-exon replacement. Our results show that 5'-PTMs can be designed to repair mutations in the beta-globin transcript involved in sickle cell anemia and beta-thalassemia while providing insight into considerations for competition between trans- versus cis-splicing in mammalian cells. Target transcripts with impaired cis-splicing capabilities, like those produced in some forms of beta-thalassemia, are more efficiently repaired via trans-splicing than targets in which cis-splicing is unaffected as with sickle beta-globin. This study reveals desirable characteristics in substrate RNAs for trans-splicing therapeutics as well as provides an opportunity for further exploration into general splicing mechanisms via 5'-PTMs.


Assuntos
Globinas/genética , Mutação , RNA Mensageiro/genética , Trans-Splicing , Linhagem Celular , Éxons , Humanos , Íntrons , Spliceossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...