Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 71(5): 702-10, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-16376306

RESUMO

Small interfering RNAs (siRNA), RNA duplexes of approximately 21 nucleotides, offer a promising approach to specifically degrade RNAs in target cells by a process termed RNA interference. Insufficient in vivo-stability is a major problem of a systemic application of siRNAs in humans. The present study demonstrated that RNAse A-like RNAses degraded siRNAs in serum. The susceptibility of siRNAs towards degradation in serum was strongly enhanced by local clustering of A/Us within the siRNA sequence, i.e. regions showing low thermal stability, most notably at the ends of the molecule, and by 3'-overhanging bases. Importantly, inhibition of RNAse A family enzymes prevented the degradation and loss of silencing activity of siRNAs in serum. Furthermore, the degradation of siRNAs was considerably faster in human than in mouse serum, suggesting that the degradation of siRNAs by RNAse A family enzymes might be a more challenging problem in a future therapeutic application of siRNAs in humans than in mouse models. Together, the present study indicates that siRNAs are degraded by RNAse A family enzymes in serum and that the kinetics of their degradation in serum depends on their sequence. These findings might be of great importance for a possible future human therapeutic application of siRNAs.


Assuntos
Inativação Gênica/fisiologia , RNA Interferente Pequeno/fisiologia , Ribonuclease Pancreático/fisiologia , Sequência de Bases , Linhagem Celular , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Humanos , Hidrólise , RNA Interferente Pequeno/sangue , Reprodutibilidade dos Testes , Transfecção
2.
Mol Biol Cell ; 16(12): 5639-48, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16207818

RESUMO

Elevation of the intracellular cAMP concentration ([cAMP]i) regulates metabolism, cell proliferation, and differentiation and plays roles in memory formation and neoplastic growth. cAMP mediates its effects mainly through activation of protein kinase A (PKA) as well as Epac1 and Epac2, exchange factors activating the small GTPases Rap1 and Rap2. However, how cAMP utilizes these effectors to induce distinct biological responses is unknown. We here studied the specific roles of PKA and Epac in neuroendocrine PC12 cells. In these cells, elevation of [cAMP]i activates extracellular signal-regulated kinase (ERK) 1/2 and induces low-degree neurite outgrowth. The present study showed that specific stimulation of PKA triggered ERK1/2 activation that was considerably more transient than that observed upon simultaneous activation of both PKA and Epac. Unexpectedly, the PKA-specific cAMP analog induced cell proliferation rather than neurite outgrowth. The proliferative signaling pathway activated by the PKA-specific cAMP analog involved activation of the epidermal growth factor receptor and ERK1/2. Activation of Epac appeared to extend the duration of PKA-dependent ERK1/2 activation and converted cAMP from a proliferative into an anti-proliferative, neurite outgrowth-promoting signal. Thus, the present study showed that the outcome of cAMP signaling can depend heavily on the set of cAMP effectors activated.


Assuntos
Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , AMP Cíclico/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neuritos/fisiologia , Células PC12 , Feocromocitoma , Ratos , Transdução de Sinais/efeitos dos fármacos
3.
FEBS Lett ; 579(21): 4751-6, 2005 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-16098520

RESUMO

The maturation of Borna disease virus (BDV) glycoprotein GP was studied in regard to intracellular compartmentalization, compartmentalization signal-domains, proteolytic processing, and packaging into virus particles. Our data show that BDV-GP is (i) predominantly located in the endoplasmic reticulum (ER), (ii) partially exists in the ER already as cleaved subunits GP-N and GP-C, (iii) is directed to the ER/cis-Golgi region by its transmembrane and/or cytoplasmic domains in CD8-BDV-GP hybrid constructs and (iv) is incorporated in the virus particles as authentic BDV glycoprotein exclusively in the cleaved form decorated with N-glycans of the complex type. Downregulation of BDV-glycoproteins on the cell surface, their limited proteolytic processing, and protection of antigenic epitopes on the viral glycoproteins by host-identical N-glycans are different strategies for persistent virus infections.


Assuntos
Vírus da Doença de Borna/metabolismo , Proteínas Virais de Fusão/metabolismo , Animais , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Epitopos , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais de Fusão/genética
4.
FEBS Lett ; 531(2): 255-8, 2002 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-12417322

RESUMO

The only surface membrane glycoprotein of Borna disease virus (BDV) is synthesized as a polypeptide with a molecular mass of 57 kDa and N-glycosylated to a precursor glycoprotein (GP) of about 94 kDa. It is processed by the cellular protease furin into the C-terminal membrane-anchored subunit GP-C, also known as gp43, and a presumptive N-terminal subunit GP-N, that is highly glycosylated and has a molecular mass of about 51 kDa. However, up to now the latter remained undetected in BDV-infected material. We describe a novel approach to identify glycan masked linear antigenic epitopes. In the present study, GP-N was identified in BDV-infected cells by a combination of lectin precipitation, enzymatic deglycosylation on blot and immunochemistry using an N-terminal specific antiserum. The GP-N has an apparent molecular mass of 45-50 kDa in its glycosylated form and 27 kDa in its deglycosylated form. N-glycan analysis revealed that the precursor GP contains only mannose-rich N-glycans, whereas GP-N and GP-C contain mannose-rich and complex-type N-glycans.


Assuntos
Vírus da Doença de Borna , Glicoproteínas/química , Proteínas Virais/química , Animais , Vírus da Doença de Borna/imunologia , Linhagem Celular , Chlorocebus aethiops , Cães , Glicoproteínas/análise , Glicoproteínas/imunologia , Glicosídeo Hidrolases , Immunoblotting , Lectinas/metabolismo , Manose/análise , Peso Molecular , Polissacarídeos/química , Subunidades Proteicas , Células Vero , Proteínas Virais/análise , Proteínas Virais/imunologia
5.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 8): 1371-3, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12136159

RESUMO

The matrix protein M of Borna disease virus (BDV) is associated with the inner viral membrane and is thought to be a mediator between the nucleocapsid and the lipid-containing envelope in stabilizing the virus shape. The full-length BDV-M gene encoding a 16 kDa protein was expressed in Escherichia coli. M was purified to homogeneity and crystallized by the sitting-drop vapour-diffusion method. The crystals of M belong to the space group I432, with unit-cell parameters a = b = c = 144.6 A, and diffract to 3.1 A.


Assuntos
Vírus da Doença de Borna/química , Proteínas da Matriz Viral/química , Sequência de Bases , Vírus da Doença de Borna/genética , Cristalização , Cristalografia por Raios X , DNA Viral/genética , Estrutura Molecular , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...