Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Death Dis ; 3: e414, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23096115

RESUMO

Besides inducing apoptosis, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) activates NF-κB. The apoptosis signaling pathway of TRAIL is well characterized involving TRAIL receptors, Fas-associated protein with death domain (FADD) and caspase-8. In contrast, the molecular mechanism of TRAIL signaling to NF-κB remains controversial. Here, we characterized the receptor-proximal mediators of NF-κB activation by TRAIL. Deletion of the DD of TRAIL receptors 1 and 2 revealed that it is essential in NF-κB signaling. Because FADD interacts with the TRAIL receptor DD, FADD was tested. RNAi-mediated knockdown of FADD or FADD deficiency in JURKAT T-cell leukemia cells decreased or disabled NF-κB signaling by TRAIL. In contrast, TRAIL-induced activation of NF-κB was maintained upon loss of receptor interacting protein 1 (RIP1) or knockdown of FLICE-like inhibitory protein (FLIP). Exogenous expression of FADD rescued TRAIL-induced NF-κB signaling. Loss-of-function mutations of FADD within the RHDLL motif of the death effector domain, which is required for TRAIL-induced apoptosis, abrogated FADD's ability to recruit caspase-8 and mediate NF-κB activation. Accordingly, deficiency of caspase-8 inhibited TRAIL-induced activation of NF-κB, which was rescued by wild-type caspase-8, but not by a catalytically inactive caspase-8 mutant. These data establish the mechanism of TRAIL-induced NF-κB activation involving the TRAIL receptor DD, FADD and caspase-8, but not RIP1 or FLIP. Our results show that signaling of TRAIL-induced apoptosis and NF-κB bifurcates downstream of caspase-8.


Assuntos
Caspase 8/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , NF-kappa B/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ativação Transcricional , Caspase 8/genética , Linhagem Celular , Proteína de Domínio de Morte Associada a Fas/genética , Humanos , NF-kappa B/metabolismo , Ligação Proteica , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais
3.
Oncogene ; 26(12): 1789-801, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16983342

RESUMO

Functional inactivation of transcription factors in hematopoietic stem cell development is involved in the pathogenesis of acute myeloid leukemia (AML). Stem cell regulator C/enhancer binding protein (EBP)alpha is among such transcription factors known to be inactive in AML. This is either due to mutations or inhibition by protein-protein interactions. Here, we applied a mass spectrometry-based proteomic approach to systematically identify putative co-activator proteins interacting with the DNA-binding domain (DBD) of C/EBP transcription factors. In our proteomic screen, we identified c-Jun N-terminal kinase (JNK) 1 among others such as PAK6, MADP-1, calmodulin-like skin proteins and ZNF45 as proteins interacting with DBD of C/EBPs from nuclear extract of myelomonocytic U937 cells. We show that kinase JNK1 physically interacts with DBD of C/EBPalpha in vitro and in vivo. Furthermore, we show that active JNK1 inhibits ubiquitination of C/EBPalpha possibly by phosphorylating in its DBD. Consequently, JNK1 prolongs C/EBPalpha protein half-life leading to its enhanced transactivation and DNA-binding capacity. In certain AML patients, however, the JNK1 mRNA expression and its kinase activity is decreased which suggests a possible reason for C/EBPalpha inactivation in AML. Thus, we report the first proteomic screen of C/EBP-interacting proteins, which identifies JNK1 as positive regulator of C/EBPalpha.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteoma , Ubiquitina/antagonistas & inibidores , Sequência de Bases , Linhagem Celular , Primers do DNA , Eletroforese em Gel Bidimensional , Humanos , Fosforilação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ubiquitina/metabolismo
4.
EMBO J ; 20(20): 5678-91, 2001 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-11598011

RESUMO

The oncogenic latent membrane protein 1 (LMP1) of the Epstein-Barr virus recruits tumor necrosis factor-receptor (TNFR)-associated factors (TRAFs), the TNFR-associated death domain protein (TRADD) and JAK3 to induce intracellular signaling pathways. LMP1 serves as the prototype of a TRADD-binding receptor that transforms cells but does not induce apoptosis. Here we show that TRAF6 critically mediates LMP1 signaling to p38 mitogen-activated protein kinase (MAPK) via a MAPK kinase 6-dependent pathway. In addition, NF-kappaB but not c-Jun N-terminal kinase 1 (JNK1) induction by LMP1 involves TRAF6. The PxQxT motif of the LMP1 C-terminal activator region 1 (CTAR1) and tyrosine 384 of CTAR2 together are essential for full p38 MAPK activation and for TRAF6 recruitment to the LMP1 signaling complex. Dominant-negative TRADD blocks p38 MAPK activation by LMP1. The data suggest that entry of TRAF6 into the LMP1 complex is mediated by TRADD and TRAF2. In TRAF6-knockout fibroblasts, significant induction of p38 MAPK by LMP1 is dependent on the ectopic expression of TRAF6. We describe a novel role of TRAF6 as an essential signaling mediator of a transforming oncogene, downstream of TRADD and TRAF2.


Assuntos
Proteínas de Transporte/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Transformação Celular Viral , Proteínas do Citoesqueleto , Indução Enzimática/efeitos dos fármacos , Fibroblastos/metabolismo , Marcação de Genes , Células HeLa , Herpesvirus Humano 4/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Rim , Proteínas com Domínio LIM , MAP Quinase Quinase 6 , Substâncias Macromoleculares , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Proteína Quinase 8 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Modelos Biológicos , NF-kappa B/fisiologia , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas/genética , Relação Estrutura-Atividade , Fator 1 Associado a Receptor de TNF , Fator 2 Associado a Receptor de TNF , Fator 6 Associado a Receptor de TNF , Tirosina/química , Proteínas Quinases p38 Ativadas por Mitógeno
6.
FASEB J ; 14(13): 2008-21, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11023985

RESUMO

Using immobilized GST-Raf-1 as bait, we have isolated the intermediate filament protein vimentin as a Raf-1-associated protein. Vimentin coimmunoprecipitated and colocalized with Raf-1 in fibroblasts. Vimentin was not a Raf-1 substrate, but was phosphorylated by Raf-1-associated vimentin kinases. We provide evidence for at least two Raf-1-associated vimentin kinases and identified one as casein kinase 2. They are regulated by Raf-1, since the activation status of Raf-1 correlated with the phosphorylation of vimentin. Vimentin phosphorylation by Raf-1 preparations interfered with its polymerization in vitro. A subset of tryptic vimentin phosphopeptides induced by Raf-1 in vitro matched the vimentin phosphopeptides isolated from v-raf-transfected cells labeled with orthophosphoric acid, indicating that Raf-1 also induces vimentin phosphorylation in intact cells. In NIH 3T3 fibroblasts, the selective activation of an estrogen-regulated Raf-1 mutant induced a rearrangement and depolymerization of the reticular vimentin scaffold similar to the changes elicited by serum treatment. The rearrangement of the vimentin network occurred independently of the MEK/ERK pathway. These data identify a new branch point in Raf-1 signaling, which links Raf-1 to changes in the cytoskeletal architecture.


Assuntos
Filamentos Intermediários/ultraestrutura , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Vimentina/metabolismo , Sequência de Aminoácidos , Células Cultivadas , Ativação Enzimática , Dados de Sequência Molecular , Mapeamento de Peptídeos , Fosfopeptídeos/isolamento & purificação , Fosforilação , Ligação Proteica
7.
EMBO J ; 18(11): 3064-73, 1999 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-10357818

RESUMO

Latent membrane protein 1 (LMP1) acts like a permanently activated receptor of the tumor necrosis factor (TNF)-receptor superfamily and is absolutely required for B cell immortalization by Epstein-Barr virus. Molecular and biochemical approaches demonstrated that LMP1 usurps cellular signaling pathways resulting in the induction of NF-kappaB and AP-1 via two C-terminal activating regions. We demonstrate here that a third region encompassing a proline rich sequence within the 33 bp repetitive stretch of LMP1's C-terminus is required for the activation of Janus kinase 3 (JAK3). The interaction of LMP1 and JAK3 leads to the enhanced tyrosine auto/transphosphorylation of JAK3 within minutes after crosslinking of a conditional NGF-R:LMP1 chimera and is a prerequisite for the activation of STAT transcription factors. These results reveal a novel activating region in the LMP1 C-terminus and identify the JAK/STAT pathway as a target of this viral integral membrane protein in B cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Herpesvirus Humano 4/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Proteínas da Matriz Viral/metabolismo , Sequência de Aminoácidos , Animais , Linfócitos B/enzimologia , Linfócitos B/metabolismo , Linhagem Celular , Sequência Consenso/genética , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Ativação Enzimática , Herpesvirus Humano 4/genética , Humanos , Janus Quinase 3 , Camundongos , Dados de Sequência Molecular , Fosforilação , Fosfotirosina/metabolismo , Prolina/genética , Prolina/metabolismo , Ligação Proteica , Proteínas Tirosina Quinases/genética , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sequências Repetitivas de Aminoácidos , Fator de Transcrição STAT1 , Deleção de Sequência , Transativadores/genética , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética
8.
EMBO J ; 18(9): 2511-21, 1999 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-10228165

RESUMO

The Epstein-Barr virus latent membrane protein 1 (LMP1) binds tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) and the TNFR-associated death domain protein (TRADD). Moreover, it induces NF-kappaB and the c-Jun N-terminal kinase 1 (JNK1) pathway. Thus, LMP1 appears to mimick the molecular functions of TNFR1. However, TNFR1 elicits a wide range of cellular responses including apoptosis, whereas LMP1 constitutes a transforming protein. Here we mapped the JNK1 activator region (JAR) of the LMP1 molecule. JAR overlaps with the TRADD-binding domain of LMP1. In contrast to TNFR1, LMP1 recruits TRADD via the TRADD N-terminus but not the TRADD death domain. Consequently, the molecular function of TRADD in LMP1 signaling differs from its role in TNFR1 signal transduction. Whereas NF-kappaB activation by LMP1 was blocked by a dominant-negative TRADD mutant, LMP1 induces JNK1 independently of the TRADD death domain and TRAF2, which binds to TRADD. Further downstream, JNK1 activation by TNFR1 involves Cdc42, whereas LMP1 signaling to JNK1 is independent of p21 Rho-like GTPases. Although both LMP1 and TNFR1 interact with TRADD and TRAF2, the different topologies of the signaling complexes correlate with substantial differences between LMP1 and TNFR1 signal transduction to JNK1.


Assuntos
Antígenos CD/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Ativadas por Mitógeno , Proteínas Oncogênicas Virais/metabolismo , Proteínas/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Proteínas da Matriz Viral/metabolismo , Sítios de Ligação , Transformação Celular Neoplásica , Ativação Enzimática , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Modelos Biológicos , Modelos Moleculares , Mutação , NF-kappa B/metabolismo , Ligação Proteica , Proteínas/genética , Receptores Tipo I de Fatores de Necrose Tumoral , Transdução de Sinais , Fator 1 Associado a Receptor de TNF , Fator 2 Associado a Receptor de TNF , Proteínas rho de Ligação ao GTP
9.
J Biol Chem ; 273(35): 22848-55, 1998 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-9712920

RESUMO

Raf kinases are regulators of cellular proliferation, transformation, differentiation, and apoptosis. To identify downstream targets of Raf-1 in vivo, we used NIH 3T3 fibroblasts expressing a Raf-1 kinase domain-estrogen receptor fusion protein (BXB-ER), whose activity can be acutely regulated by estrogen. Proteins differentially phosphorylated 20 min after BXB-ER activation in living cells were displayed by two-dimensional electrophoresis. The protein with the most prominent newly induced phosphorylation was identified as stathmin, a phosphorylation-sensitive regulator of microtubule dynamics. Stathmin is rapidly phosphorylated on two ERK phosphorylation sites (serines 25 and 38) upon BXB-ER activation. The mitogen-activated protein kinase/extracellular signal-regulated kinase-kinase (MEK) inhibitor PD98059 abolished this phosphorylation, demonstrating that stathmin is targeted by BXB-ER via the MEK/ERK pathway. Prolonged BXB-ER activation resulted in the accumulation of a stathmin phosphoisomer with impaired microtubule-destabilizing activity. The appearance of this phosphoisomer after BXB-ER activation correlated with rearrangements in the microtubule network, resulting in the formation of long bundled microtubules extending toward the rim of the cells. Our results identify stathmin as a main target of the Raf/MEK/ERK kinase cascade in vivo and strongly suggest that ERK-mediated stathmin phosphorylation plays an important role for the microtubule reorganization induced by acute activation of Raf-1.


Assuntos
Proteínas dos Microtúbulos , Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Células 3T3 , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Camundongos , Fosfoproteínas/química , Fosforilação , Serina/metabolismo , Estatmina
10.
EMBO J ; 17(6): 1700-9, 1998 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-9501091

RESUMO

The Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is essential for the immortalization of human B cells and is linked etiologically to several human tumors. LMP1 is an integral membrane protein which acts like a constitutively active receptor. It binds tumor necrosis factor (TNF)-receptor-associated factors (TRAFs), activates NF-kappaB and triggers the transcription factor AP-1 via the c-Jun N-terminal kinase (JNK) cascade, but its specific contribution to B-cell immortalization has not been elucidated fully. To address the function of LMP1, we established B cell lines with a novel mini-EBV plasmid in which the LMP1 gene can be regulated at will without affecting the expression of other latent EBV genes. We demonstrate here that continuous expression of LMP1 is essential for the proliferation of EBV-immortalized B cells in vitro. Re-induction of LMP1 expression or activation of the cellular CD40 receptor both induce the JNK signaling cascade, activate the transcription factor NF-kappaB and stimulate proliferation of these B cells. Our findings strongly suggest that LMP1 mimics B-cell activation processes which are physiologically triggered by CD40-CD40 ligand signals. Since LMP1 acts in a ligand-independent manner, it replaces the T cell-derived activation signal to sustain indefinite B-cell proliferation.


Assuntos
Linfócitos B/virologia , Antígenos CD40/fisiologia , Transformação Celular Viral/fisiologia , Herpesvirus Humano 4/fisiologia , Proteínas Quinases Ativadas por Mitógeno , Proteínas da Matriz Viral/fisiologia , Linfócitos B/citologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Divisão Celular , Linhagem Celular Transformada , Antígenos Nucleares do Vírus Epstein-Barr/análise , Regulação da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , NF-kappa B/metabolismo , Proteínas Repressoras , Transdução de Sinais/fisiologia , Tetraciclina/farmacologia , Proteínas da Matriz Viral/genética
11.
EMBO J ; 16(21): 6478-85, 1997 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-9351829

RESUMO

The Epstein-Barr virus latent membrane protein-1 (LMP-1) is an integral membrane protein which transforms fibroblasts and is essential for EBV-mediated B-cell immortalization. LMP-1 has been shown to trigger cellular NF-kappa B activity which, however, cannot fully explain the oncogenic potential of LMP-1. Here we show that LMP-1 induces the activity of the AP-1 transcription factor, a dimer of Jun/Jun or Jun/Fos proteins. LMP-1 effects on AP-1 are mediated through activation of the c-Jun N-terminal kinase (JNK) cascade, but not the extracellular signal-regulated kinase (Erk) pathway. Consequently, LMP-1 triggers the activity of the c-Jun N-terminal transactivation domain which is known to be activated upon JNK-mediated phosphorylation. Deletion analysis indicates that the 55 C-terminal amino acids of the LMP-1 molecule, but not its TRAF interaction domain, are essential for AP-1 activation. JNK-mediated transcriptional activation of AP-1 is the direct output of LMP-1-triggered signaling, as shown by an inducible LMP-1 mutant. Using a tetracycline-regulated LMP-1 allele, we demonstrate that JNK is also an effector of non-cytotoxic LMP-1 signaling in B cells, the physiological target cells of EBV. In summary, our data reveal a novel effector of LMP-1, the SEK/JNK/c-Jun/AP-1 pathway, which contributes to our understanding of the immortalizing and transforming potential of LMP-1.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/fisiologia , MAP Quinase Quinase 4 , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno , Transdução de Sinais/fisiologia , Fator de Transcrição AP-1/metabolismo , Proteínas da Matriz Viral/fisiologia , Linfócitos B/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/análise , Transformação Celular Viral/fisiologia , Células Cultivadas , Herpesvirus Humano 4/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Rim , Proteína Quinase 1 Ativada por Mitógeno , Proteínas Quinases/genética , Proteínas Quinases/fisiologia , Proteínas Proto-Oncogênicas c-jun/química , Fator de Transcrição AP-1/química , Ativação Transcricional
12.
Genes Dev ; 10(12): 1455-66, 1996 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-8666230

RESUMO

We have identified protein kinase C-zeta (PKC-zeta) as a novel suppressor of neoplastic transformation caused by the v-raf oncogene. PKC-zeta overexpression drastically retards proliferation, abolishes anchorage-independent growth, and reverts the morphological transformation of v-raf-transformed NIH-3T3 cells. The molecular basis for this effect appears to be a specific induction of junB and egr-1 expression, triggered synergistically by PKC-zeta via a Raf/Mek/MAPK-independent mechanism and v-raf. junB-promoter/CAT assays revealed that PKC-zeta directly targets the junB promoter. The induction of junB and egr-1 is linked to the v-raf transformation-suppressing effect of PKC-zeta as constitutive expression of junB and egr-1 but not of c-jun also abolishes anchorage-independent growth of v-raf-transformed NIH-3T3 cells. Moreover, junB overexpression leads to a retardation of proliferation in these cells. PKC-zeta interferes with the serum inducibility of an AP-1 reporter plasmid in v-raf-transformed NIH-3T3 cells, indicating that PKC-zeta antagonizes transformation and proliferation by down-modulating AP-1 function via induction of junB. In summary, our data suggest that PKC-zeta counteracts v-raf transformation by modulating the expression of the transcription factors junB and egr-1.


Assuntos
Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Imediatamente Precoces , MAP Quinase Quinase Quinase 1 , Proteínas Quinases Ativadas por Mitógeno , Proteína Quinase C/fisiologia , Proteínas Oncogênicas de Retroviridae/genética , Células 3T3 , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/biossíntese , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Divisão Celular , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Proteína 1 de Resposta de Crescimento Precoce , Genes Supressores , Camundongos , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Oncogênicas v-raf , Regiões Promotoras Genéticas , Proteína Quinase C/biossíntese , Proteína Quinase C/genética , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-jun/biossíntese , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-raf , Transdução de Sinais , Fator de Transcrição AP-1/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
13.
FEBS Lett ; 372(2-3): 189-93, 1995 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-7556667

RESUMO

Individual protein kinase C isozymes have been shown to play different roles in mediating proliferation, differentiation and transformation, but it is not known to what extent these effects involve induction of expression of particular genes. To explore the differential gene expression that might be induced by activation of different PKC isozymes, we stably transfected NIH 3T3 cells with expression vectors that encode the isozymes PKC-alpha, -beta II, -gamma, -delta, -epsilon, -sigma and -eta. Using differential display-reverse transcription-polymerase chain reaction we isolated a small cDNA that encodes a portion of the primary response gene, ST2 (also referred to as T1 or DER4), and we confirmed by RNA blot studies that ST2/T1 expression is differentially regulated by PKC isozymes. ST2/T1 mRNA is undetectable in the unstimulated parental NIH 3T3 cells that express only the alpha isozyme of PKC, but it can be induced by phorbol ester treatment. Clones that overexpress PKC-alpha, -delta or -epsilon similarly do not express ST2/T1 until they are stimulated with phorbol esters, which induces expression of ST2/T1 with kinetics similar to wild-type NIH 3T3 but to different extents. In contrast, ST2/T1 mRNA is already present in unstimulated cells that overexpress PKC-beta II, -gamma, -sigma and -eta, but phorbol ester greatly enhances ST2/T1 expression in these cells. These results suggest a differential role for PKC isozymes in mediating the ST2/T1 expression that is induced by growth stimuli.


Assuntos
Regulação da Expressão Gênica , Isoenzimas/metabolismo , Proteínas de Membrana , Proteína Quinase C/metabolismo , Proteínas/genética , Células 3T3 , Animais , Técnicas de Transferência de Genes , Proteína 1 Semelhante a Receptor de Interleucina-1 , Camundongos , Biossíntese de Proteínas , Receptores de Interleucina
14.
Breast Cancer Res Treat ; 36(2): 139-55, 1995.
Artigo em Inglês | MEDLINE | ID: mdl-8534863

RESUMO

Vascular endothelial growth factor (VEGF)/vascular permeability factor (VPS) plays a crucial role for the vascularization of tumors including breast cancers. Tumors produce ample amounts of VEGF, which stimulates the proliferation and migration of endothelial cells (ECs), thereby inducing tumor vascularization by a paracrine mechanism. VEGF receptors (VEGF-Rs) are highly expressed by the ECs in tumor blood vessels. VEGF expression can be induced in various cell types by a number of stimuli including hypoxia, differentiation, growth factors and tumor promoters of the phorbol ester class, such as TPA. The VEGF inductive pathways comprise kinases, oncogenes, tumor suppressor genes, and steroid hormone transcription factors, many of which seem to converge on the activator protein (AP-1) transcription factor. Much less is known about the regulation of VEGF-R expression, which is restricted to ECs. This expression is greatly enhanced in diseased tissue such as solid tumors. So far, it appears that growth factors, cytokines, and tumor promoters are involved in the control of VEGF-R expression. Here we review current knowledge about the regulation of the expression of VEGF and its receptors.


Assuntos
Neoplasias da Mama/irrigação sanguínea , Fatores de Crescimento Endotelial/biossíntese , Linfocinas/biossíntese , Neovascularização Patológica/metabolismo , Receptores Proteína Tirosina Quinases/biossíntese , Receptores de Fatores de Crescimento/biossíntese , Animais , Neoplasias da Mama/metabolismo , Expressão Gênica , Humanos , Recém-Nascido , Receptores de Fatores de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
15.
Oncogene ; 9(3): 963-9, 1994 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8108142

RESUMO

Many tumor cells produce vascular endothelial growth factor (VEGF), which is thought to be a pivotal mediator of tumor neoangiogenesis. Expression of the VEGF gene can be induced by tumor promoting phorbol esters, such as 12-O-tetradecanoylphorbol-13-acetate (TPA), which activate protein kinase C (PKC). Here we show that in transient transfection assays a mutated form of the murine p53 tumor suppressor gene (ala135-->val) induces expression of VEGF mRNA and potentiates TPA stimulated VEGF mRNA expression. In NIH 3T3 cells which stably overexpress the temperature sensitive p53 (ala135-->val), displaying mutant phenotype at 37 degrees C and wildtype phenotype at 32.5 degrees C, induction of VEGF mRNA and protein by activated PKC is strongly synergistic with mutant, but not wildtype p53. Mutant p53 specifically increases TPA induction of VEGF without affecting the expression of other TPA inducible genes. TPA dependent VEGF expression is also enhanced by human p53 mutated at amino acid 175. Thus, our data link PKC and p53, the gene most frequently altered in human tumors, with the regulation of tumor angiogenesis.


Assuntos
Fatores de Crescimento Endotelial/biossíntese , Genes p53 , Linfocinas/biossíntese , Mutação , Proteína Quinase C/metabolismo , Células 3T3 , Animais , Fatores de Crescimento Endotelial/genética , Ativação Enzimática , Humanos , Linfocinas/genética , Camundongos , RNA Mensageiro/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...