Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338958

RESUMO

The molecular basis for circadian dependency in stroke due to subarachnoid hemorrhagic stroke (SAH) remains unclear. We reasoned that microglial erythrophagocytosis, crucial for SAH response, follows a circadian pattern involving carbon monoxide (CO) and CD36 surface expression. The microglial BV-2 cell line and primary microglia (PMG) under a clocked medium change were exposed to blood ± CO (250 ppm, 1 h) in vitro. Circadian dependency and the involvement of CD36 were analyzed in PMG isolated from control mice and CD36-/- mice and by RNA interference targeting Per-2. In vivo investigations, including phagocytosis, vasospasm, microglia activation and spatial memory, were conducted in an SAH model using control and CD36-/- mice at different zeitgeber times (ZT). In vitro, the surface expression of CD36 and its dependency on CO and phagocytosis occurred with changed circadian gene expression. CD36-/- PMG exhibited altered circadian gene expression, phagocytosis and impaired responsiveness to CO. In vivo, control mice with SAH demonstrated circadian dependency in microglia activation, erythrophagocytosis and CO-mediated protection at ZT2, in contrast to CD36-/- mice. Our study indicates that circadian rhythmicity modulates microglial activation and subsequent CD36-dependent phagocytosis. CO altered circadian-dependent neuroprotection and CD36 induction, determining the functional outcome in a hemorrhagic stroke model. This study emphasizes how circadian rhythmicity influences neuronal damage after neurovascular events.


Assuntos
Acidente Vascular Cerebral Hemorrágico , Linfo-Histiocitose Hemofagocítica , Hemorragia Subaracnóidea , Camundongos , Animais , Microglia/metabolismo , Monóxido de Carbono/metabolismo , Neuroproteção , Fagocitose/fisiologia , Hemorragia Subaracnóidea/metabolismo
2.
J Inflamm (Lond) ; 20(1): 43, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104143

RESUMO

BACKGROUND: The heme oxygenase-1 (HO-1) enzyme pathway is of crucial importance in the removal of toxic blood components and regulation of neuroinflammation following hemorrhagic stroke. Although a circadian pattern dependency in the incidence and severity of hemorrhagic stroke exists, it is unknown whether the activity of the HO-1 system in the context of hemorrhagic injury also exhibits circadian dependency. We hypothesized that the circadian regulation of microglial HO-1 would determine the extent of neuroinflammation and neuronal injury in a murine model of subarachnoid hemorrhage (SAH). METHODS: In vitro expression patterns of HO-1 and circadian rhythm genes were analyzed in the microglial BV-2 cell line and primary microglia (PMG) using Western blot and qPCR. PMG isolated from Hmox1fl/fl and LyzM-Cre-Hmox1fl/fl mice were used to evaluate the role of microglial HO-1. We further investigated the in vivo relevance in a murine subarachnoid hemorrhage (SAH) model using Hmox1fl/fl and LyzM-Cre-Hmox1fl/fl mice with myeloid cell HO-1 deficiency, inducing SAH at different zeitgeber (ZT) times and analyzing the expression of HO-1 and the circadian control gene Period-2 (Per-2), respectively. Furthermore, we measured the inflammatory cytokine Monocyte Chemoattractant Protein-1 (MCP-1) in the cerebrospinal fluid of SAH patients in correlation with clinical outcome. RESULTS: HO-1 baseline expression and response to CO with blood exposure depended on ZT. In vitro expression of circadian control genes was de-synchronized in LyzM-Cre-Hmox1fl/fl PMG and did not respond to exogenous CO exposure. We found that circadian rhythm plays a crucial role in brain damage after SAH. At ZT2, we observed less phagocytic function, more vasospasm and increased microglial activation. CO reduced mortality at ZT12 in HO-1 deficient mice and reduced the difference between ZT2 and ZT12 in the inflammatory response. Induction of MCP-1 in the CSF from SAH patients was time-dependent and correlated with the expression of circadian control genes, SAH severity, functional impairment and delirium. CONCLUSIONS: Our data point towards a crucial role for the HO-1 enzyme system and circadian control in neuronal injury after a hemorrhagic stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...