Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(6): e0287655, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363899

RESUMO

BACKGROUND: The role of larval predators in regulating the Anopheles funestus population in various malaria-endemic countries remains relatively unknown. This study aimed to investigate the common predators that co-exist with Anopheles funestus group larvae and evaluate factors that influence their abundance in rural south-eastern Tanzania. METHODS: Mosquito larvae and predators were sampled concurrently using standard dipper (350 ml) or 10 L bucket in previously identified aquatic habitats in selected villages in southern Tanzania. Predators and mosquito larvae were identified using standard identification keys. All positive habitats were geo-located and their physical features characterized. Water physicochemical parameters such as dissolved oxygen (DO), pH, electrical conductivity (EC), total dissolved solids (TDS) and temperature were also recorded. RESULTS: A total of 85 previously identified An. funestus aquatic habitats in nine villages were sampled for larvae and potential predators. A total of 8,295 predators were sampled. Of these Coenagrionidae 57.7% (n = 4785), Corixidae 12.8% (n = 1,060), Notonectidae 9.9% (n = 822), Aeshnidae 4.9% (n = 405), Amphibian 4.5% (n = 370), Dytiscidae 3.8% (n = 313) were common. A total of 5,260 mosquito larvae were sampled, whereby Anopheles funestus group were 60.3% (n = 3,170), Culex spp. 24.3% (n = 1,279), An. gambie s.l. 8.3% (n = 438) and other anophelines 7.1% (n = 373). Permanent and aquatic habitats larger than 100m2 were positively associated with An. funestus group larvae (P<0.05) and predator abundance (P<0.05). Habitats with submerged vegetation were negatively associated with An. funestus group larvae (P<0.05). Only dissolved oxygen (DO) was positively and significantly affect the abundance of An. funestus group larvae (P<0.05). While predators' abundance was not impacted by all physicochemical parameters. CONCLUSION: Six potential predator families were common in aquatic habitats of An. funestus group larvae. Additional studies are needed to demonstrate the efficacy of different predators on larval density and adult fitness traits. Interventions leveraging the interaction between mosquitoes and predators can be established to disrupt the transmission potential and survival of the An. funestus mosquitoes.


Assuntos
Anopheles , Malária , Humanos , Animais , Anopheles/fisiologia , Tanzânia/epidemiologia , Ecossistema , Malária/epidemiologia , Temperatura , Larva , Mosquitos Vetores/fisiologia
3.
Malar J ; 22(1): 43, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739391

RESUMO

BACKGROUND: Early-evening and outdoor-biting mosquitoes may compromise the effectiveness of frontline malaria interventions, notably insecticide-treated nets (ITNs). This study aimed to evaluate the efficacy of low-cost insecticide-treated eave ribbons and sandals as supplementary interventions against indoor-biting and outdoor-biting mosquitoes in south-eastern Tanzania, where ITNs are already widely used. METHODS: This study was conducted in three villages, with 72 households participating (24 households per village). The households were divided into four study arms and assigned: transfluthrin-treated sandals (TS), transfluthrin-treated eave ribbons (TER), a combination of TER and TS, or experimental controls. Each arm had 18 households, and all households received new ITNs. Mosquitoes were collected using double net traps (to assess outdoor biting), CDC light traps (to assess indoor biting), and Prokopack aspirators (to assess indoor resting). Protection provided by the interventions was evaluated by comparing mosquito densities between the treatment and control arms. Additional tests were done in experimental huts to assess the mortality of wild mosquitoes exposed to the treatments or controls. RESULTS: TERs reduced indoor-biting, indoor-resting and outdoor-biting Anopheles arabiensis by 60%, 73% and 41%, respectively, while TS reduced the densities by 18%, 40% and 42%, respectively. When used together, TER & TS reduced indoor-biting, indoor-resting and outdoor-biting An. arabiensis by 53%, 67% and 57%, respectively. Protection against Anopheles funestus ranged from 42 to 69% with TER and from 57 to 74% with TER & TS combined. Mortality of field-collected mosquitoes exposed to TER, TS or both interventions was 56-78% for An. arabiensis and 47-74% for An. funestus. CONCLUSION: Transfluthrin-treated eave ribbons and sandals or their combination can offer significant household-level protection against malaria vectors. Their efficacy is magnified by the transfluthrin-induced mortality, which was observed despite the prevailing pyrethroid resistance in the study area. These results suggest that TER and TS could be useful supplementary tools against residual malaria transmission in areas where ITN coverage is high but additional protection is needed against early-evening and outdoor-biting mosquitoes. Further research is needed to validate the performance of these tools in different settings, and assess their long-term effectiveness and feasibility for malaria control.


Assuntos
Anopheles , Repelentes de Insetos , Inseticidas , Malária , Animais , Humanos , Mosquitos Vetores , Tanzânia , Malária/prevenção & controle , Repelentes de Insetos/farmacologia , Controle de Mosquitos/métodos
4.
Parasite Epidemiol Control ; 18: e00264, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35959316

RESUMO

Background: In south-eastern Tanzania where insecticide-treated nets have been widely used for >20 years, malaria transmission has greatly reduced but remains highly heterogenous over small distances. This study investigated the seasonal prevalence of Plasmodium sporozoite infections in the two main malaria vector species, Anopheles funestus and Anopheles arabiensis for 34 months, starting January 2018 to November 2020. Methods: Adult mosquitoes were collected using CDC-light traps and Prokopack aspirators inside local houses in Igumbiro and Sululu villages, where earlier surveys had found very high densities of An. funestus. Collected females were sorted by taxa, and the samples examined using ELISA assays for detecting Plasmodium circumsporozoite protein in their salivary glands. Results: Of 7859 An. funestus tested, 4.6% (n = 365) were positive for Pf sporozoites in the salivary glands. On the contrary, only 0.4% (n = 9) of the 2382 An. arabiensis tested were positive. The sporozoite prevalence did not vary significantly between the villages or seasons. Similarly, the proportions of parous females of either species were not significantly different between the two villages (p > 0.05) but was slightly higher in An. funestus (0.50) than in An. arabiensis (0.42). Analysis of the 2020 data determined that An. funestus contributed 97.7% of all malaria transmitted in households in these two villages. Conclusions: In contexts where individual vector species mediate most of the pathogen transmission, it may be most appropriate to pursue a species-focused approach to better understand the ecology of the dominant vectors and target them with effective interventions to suppress transmission. Despite the ongoing efforts on tackling malaria in the two study villages, there is still persistently high Plasmodium infection prevalence in local populations of An. funestus, which now carry ~97% of all malaria infections and mediates intense year-round transmission. Further reduction in malaria burden in these or other similar settings requires effective targeting of An. funestus.

5.
PLoS One ; 17(7): e0271833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35877666

RESUMO

BACKGROUND: Understanding mosquito biting behaviours is important for designing and evaluating protection methods against nuisance biting and mosquito-borne diseases (e.g. dengue, malaria and zika). We investigated the preferred biting sites by Aedes aegypti and Anopheles arabiensis on adult volunteers in standing or sleeping positions; and estimated the theoretical protection limits affordable from protective clothing or repellent-treated footwear. METHODS: Adult volunteers dressed in shorts and t-shirts were exposed to infection-free laboratory-reared mosquitoes inside screened chambers from 6am to noon (for day-biting Ae. aegypti) or 6pm to midnight (night-biting An. arabiensis). Attempted bites on different body parts were recorded. Comparative observations were made on same volunteers while wearing sandals treated with transfluthrin, a vapour-phase pyrethroid that kills and repels mosquitoes. RESULTS: An. arabiensis bites were mainly on the lower limbs of standing volunteers (95.9% of bites below the knees) but evenly-distributed over all exposed body surfaces when the volunteers were on sleeping positions (only 28.8% bites below knees). Ae. aegypti bites were slightly concentrated on lower limbs of standing volunteers (47.7% below knees), but evenly-distributed on sleeping volunteers (23.3% below knees). Wearing protective clothing that leave only hands and head uncovered (e.g. socks + trousers + long-sleeved shirts) could theoretically prevent 78-83% of bites during sleeping, and at least 90% of bites during non-sleeping hours. If the feet are also exposed, protection declines to as low as 36.3% against Anopheles. The experiments showed that transfluthrin-treated sandals reduced An. arabiensis by 54-86% and Ae. aegypti by 32-39%, but did not change overall distributions of bites. CONCLUSION: Biting by An. arabiensis and Ae. aegypti occur mainly on the lower limbs, though this proclivity is less pronounced in the Aedes species. However, when hosts are on sleeping positions, biting by both species is more evenly-distributed over the exposed body surfaces. High personal protection might be achieved by simply wearing long-sleeved clothing, though protection against Anopheles particularly requires covering of feet and lower legs. The transfluthrin-treated footwear can reduce biting risk, especially by An. arabiensis. These findings could inform the design and use of personal protection tools (both insecticidal and non-insecticidal) against mosquitoes and mosquito-borne diseases.


Assuntos
Aedes , Anopheles , Dengue , Mordeduras e Picadas de Insetos , Repelentes de Insetos , Malária , Infecção por Zika virus , Zika virus , Adulto , Animais , Dengue/prevenção & controle , Humanos , Mordeduras e Picadas de Insetos/prevenção & controle , Repelentes de Insetos/farmacologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores
6.
Malar J ; 18(1): 314, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533739

RESUMO

BACKGROUND: Eave ribbons treated with spatial repellents effectively prevent human exposure to outdoor-biting and indoor-biting malaria mosquitoes, and could constitute a scalable and low-cost supplement to current interventions, such as insecticide-treated nets (ITNs). This study measured protection afforded by transfluthrin-treated eave ribbons to users (personal and communal protection) and non-users (only communal protection), and whether introducing mosquito traps as additional intervention influenced these benefits. METHODS: Five experimental huts were constructed inside a 110 m long, screened tunnel, in which 1000 Anopheles arabiensis were released nightly. Eave ribbons treated with 0.25 g/m2 transfluthrin were fitted to 0, 1, 2, 3, 4 or 5 huts, achieving 0, 20, 40, 60, 80 and 100% coverage, respectively. Volunteers sat near each hut and collected mosquitoes attempting to bite them from 6 to 10 p.m. (outdoor-biting), then went indoors to sleep under untreated bed nets, beside which CDC-light traps collected mosquitoes from 10 p.m. to 6 a.m. (indoor-biting). Caged mosquitoes kept inside the huts were monitored for 24 h-mortality. Separately, eave ribbons, UV-LED mosquito traps (Mosclean) or both the ribbons and traps were fitted, each time leaving the central hut unfitted to represent non-user households and assess communal protection. Biting risk was measured concurrently in all huts, before and after introducing interventions. RESULTS: Transfluthrin-treated eave ribbons provided 83% and 62% protection indoors and outdoors respectively to users, plus 57% and 48% protection indoors and outdoors to the non-user. Protection for users remained constant, but protection for non-users increased with eave ribbons coverage, peaking once 80% of huts were fitted. Mortality of mosquitoes caged inside huts with eave ribbons was 100%. The UV-LED traps increased indoor exposure to users and non-users, but marginally reduced outdoor-biting. Combining the traps and eave ribbons did not improve user protection relative to eave ribbons alone. CONCLUSION: Transfluthrin-treated eave ribbons protect both users and non-users against malaria mosquitoes indoors and outdoors. The mosquito-killing property of transfluthrin can magnify the communal benefits by limiting unwanted diversion to non-users, but should be validated in field trials against pyrethroid-resistant vectors. Benefits of the UV-LED traps as an intervention alone or alongside eave ribbons were however undetectable in this study. These findings extend the evidence that transfluthrin-treated eave ribbons could complement ITNs.


Assuntos
Anopheles , Ciclopropanos , Fluorbenzenos , Mordeduras e Picadas de Insetos/prevenção & controle , Repelentes de Insetos , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores , Adulto , Animais , Humanos , Masculino , Controle de Mosquitos/métodos , Tanzânia , Adulto Jovem
7.
Parasit Vectors ; 12(1): 418, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455370

RESUMO

BACKGROUND: Improved surveillance techniques are required to accelerate efforts against major arthropod-borne diseases such as malaria, dengue, filariasis, Zika and yellow-fever. Light-emitting diodes (LEDs) are increasingly used in mosquito traps because they improve energy efficiency and battery longevity relative to incandescent bulbs. This study evaluated the efficacy of a new ultraviolet LED trap (Mosclean) against standard mosquito collection methods. METHODS: The study was conducted in controlled semi-field settings and in field conditions in rural south-eastern Tanzania. The Mosclean trap was compared to commonly used techniques, namely CDC-light traps, human landing catches (HLCs), BG-Sentinel traps and Suna traps. RESULTS: When simultaneously placed inside the same semi-field chamber, the Mosclean trap caught twice as many Anopheles arabiensis as the CDC-light trap, and equal numbers to HLCs. Similar results were obtained when traps were tested individually in the chambers. Under field settings, Mosclean traps caught equal numbers of An. arabiensis and twice as many Culex mosquitoes as CDC-light traps. It was also better at trapping malaria vectors compared to both Suna and BG-Sentinel traps, and was more efficient in collecting mosquitoes indoors than outdoors. The majority of An. arabiensis females caught by Mosclean traps were parous (63.6%) and inseminated (89.8%). In comparison, the females caught by CDC-light traps were 43.9% parous and 92.8% inseminated. CONCLUSIONS: The UV LED trap (Mosclean trap) was efficacious for sampling Anopheles and Culex mosquitoes. Its efficacy was comparable to and in some instances better than traps commonly used for vector surveillance. The Mosclean trap was more productive in sampling mosquitoes indoors compared to outdoors. The trap can be used indoors near human-occupied nets, or outdoors, in which case additional CO2 improves catches. We conclude that this trap may have potential for mosquito surveillance. However, we recommend additional field tests to validate these findings in multiple settings and to assess the potential of LEDs to attract non-target organisms, especially outdoors.


Assuntos
Anopheles/fisiologia , Culex/fisiologia , Controle de Mosquitos/instrumentação , Controle de Mosquitos/métodos , Raios Ultravioleta , Animais , Anopheles/efeitos da radiação , Culex/efeitos da radiação , Mosquitos Vetores , Tanzânia
8.
Malar J ; 18(1): 282, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31438957

RESUMO

BACKGROUND: Effective malaria surveillance requires detailed assessments of mosquitoes biting indoors, where interventions such as insecticide-treated nets work best, and outdoors, where other interventions may be required. Such assessments often involve volunteers exposing their legs to attract mosquitoes [i.e., human landing catches (HLC)], a procedure with significant safety and ethical concerns. Here, an exposure-free, miniaturized, double-net trap (DN-Mini) is used to assess relationships between indoor-outdoor biting preferences of malaria vectors, Anopheles arabiensis and Anopheles funestus, and their physiological ages (approximated by parity and insemination states). METHODS: The DN-Mini is made of UV-resistant netting on a wooden frame and PVC base. At 100 cm × 60 cm × 180 cm, it fits indoors and outdoors. It has a protective inner chamber where a volunteer sits and collects host-seeking mosquitoes entrapped in an outer chamber. Experiments were conducted in eight Tanzanian villages using DN-Mini to: (a) estimate nightly biting and hourly biting proportions of mosquitoes indoors and outdoors; (b) compare these proportions to previous estimates by HLC in same villages; and, (c) compare distribution of parous (proxy for potentially infectious) and inseminated mosquitoes indoors and outdoors. RESULTS: More than twice as many An. arabiensis were caught outdoors as indoors (p < 0.001), while An. funestus catches were marginally higher indoors than outdoors (p = 0.201). Anopheles arabiensis caught outdoors also had higher parity and insemination proportions than those indoors (p < 0.001), while An. funestus indoors had higher parity and insemination than those outdoors (p = 0.04). Observations of indoor-biting and outdoor-biting proportions, hourly biting patterns and overall species diversities as measured by DN-Mini, matched previous HLC estimates. CONCLUSIONS: Malaria vectors that are behaviourally adapted to bite humans outdoors also have their older, potentially infectious sub-populations concentrated outdoors, while those adapted to bite indoors have their older sub-populations concentrated indoors. Here, potentially infectious An. arabiensis more likely bite outdoors than indoors, while potentially infectious An. funestus more likely bite indoors. These observations validate previous evidence that even outdoor-biting mosquitoes regularly enter houses when young. They also demonstrate efficacy of DN-Mini for measuring indoor-outdoor biting behaviours of mosquitoes, their hourly biting patterns and epidemiologically relevant parameters, e.g., parity and insemination status, without exposure to volunteers. The trap is easy-to-use, easy-to-manufacture and affordable (prototypes cost ~ 100 US$/unit).


Assuntos
Anopheles/fisiologia , Entomologia/métodos , Meio Ambiente , Mosquitos Vetores/fisiologia , Fatores Etários , Animais , Comportamento Alimentar , Malária , Especificidade da Espécie
9.
Malar J ; 18(1): 87, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894185

RESUMO

BACKGROUND: Push-pull strategies have been proposed as options to complement primary malaria prevention tools, indoor residual spraying (IRS) and long-lasting insecticide-treated nets (LLINs), by targeting particularly early-night biting and outdoor-biting mosquitoes. This study evaluated different configurations of a push-pull system consisting of spatial repellents [transfluthrin-treated eave ribbons (0.25 g/m2 ai)] and odour-baited traps (CO2-baited BG-Malaria traps), against indoor-biting and outdoor-biting malaria vectors inside large semi-field systems. METHODS: Two experimental huts were used to evaluate protective efficacy of the spatial repellents (push-only), traps (pull-only) or their combinations (push-pull), relative to controls. Adult volunteers sat outdoors (1830 h-2200 h) catching mosquitoes attempting to bite them (outdoor-biting risk), and then went indoors (2200 h-0630 h) to sleep under bed nets beside which CDC-light traps caught host-seeking mosquitoes (indoor-biting risk). Number of traps and their distance from huts were varied to optimize protection, and 500 laboratory-reared Anopheles arabiensis released nightly inside the semi-field chambers over 122 experimentation nights. RESULTS: Push-pull offered higher protection than traps alone against indoor-biting (83.4% vs. 35.0%) and outdoor-biting (79% vs. 31%), but its advantage over repellents alone was non-existent against indoor-biting (83.4% vs. 81%) and modest for outdoor-biting (79% vs. 63%). Using two traps (1 per hut) offered higher protection than either one trap (0.5 per hut) or four traps (2 per hut). Compared to original distance (5 m from huts), efficacy of push-pull against indoor-biting peaked when traps were 15 m away, while efficacy against outdoor-biting peaked when traps were 30 m away. CONCLUSION: The best configuration of push-pull comprised transfluthrin-treated eave ribbons plus two traps, each at least 15 m from huts. Efficacy of push-pull was mainly due to the spatial repellent component. Adding odour-baited traps slightly improved personal protection indoors, but excessive trap densities increased exposure near users outdoors. Given the marginal efficacy gains over spatial repellents alone and complexity of push-pull, it may be prudent to promote just spatial repellents alongside existing interventions, e.g. LLINs or non-pyrethroid IRS. However, since both transfluthrin and traps also kill mosquitoes, and because transfluthrin can inhibit blood-feeding, field studies should be done to assess potential community-level benefits that push-pull or its components may offer to users and non-users.


Assuntos
Anopheles , Dióxido de Carbono , Ciclopropanos , Fluorbenzenos , Repelentes de Insetos , Controle de Mosquitos/métodos , Mosquitos Vetores , Animais , Feminino , Humanos , Malária/prevenção & controle , Tanzânia
10.
Malar J ; 17(1): 368, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333015

RESUMO

BACKGROUND: Long-lasting insecticide-treated nets and indoor residual spraying protect against indoor-biting and indoor-resting mosquitoes but are largely ineffective for early-biting and outdoor-biting malaria vectors. Complementary tools are, therefore, needed to accelerate control efforts. This paper describes simple hessian ribbons treated with spatial repellents and wrapped around eaves of houses to prevent outdoor-biting and indoor-biting mosquitoes over long periods of time. METHODS: The eave ribbons are 15 cm-wide triple-layered hessian fabrics, in lengths starting 1 m. They can be fitted onto houses using nails, adhesives or Velcro, without completely closing eave-spaces. In 75 experimental nights, untreated ribbons and ribbons treated with 0.02%, 0.2%, 1.5% or 5% transfluthrin emulsion (spatial repellent) were evaluated against blank controls using two experimental huts inside a 202 m2 semi-field chamber where 500 laboratory-reared Anopheles arabiensis were released nightly. Two volunteers sat outdoors (one/hut) and collected mosquitoes attempting to bite them from 6 p.m. to 10 p.m. (outdoor-biting), then went indoors and slept under bed nets, beside which CDC-light traps collected mosquitoes from 10 p.m. to 6.30 a.m. (indoor-biting). To assess survival, 200 caged mosquitoes were suspended near the huts nightly and monitored for 24 h thereafter. Additionally, field tests were done in experimental huts in a rural Tanzanian village to evaluate treated ribbons (1.5% transfluthrin). Here, indoor-biting was assessed using window traps and Prokopack® aspirators, and outdoor-biting assessed using volunteer-occupied double-net traps. RESULTS: Indoor-biting and outdoor-biting decreased > 99% in huts fitted with eave ribbons having ≥ 0.2% transfluthrin. Even 0.02% transfluthrin-treated ribbons provided 79% protection indoors and 60% outdoors. Untreated ribbons however reduced indoor-biting by only 27% and increased outdoor-biting by 18%, though these were non-significant (P > 0.05). Of all caged mosquitoes exposed near treated huts, 99.5% died within 24 h. In field tests, the ribbons provided 96% protection indoors and 84% outdoors against An. arabiensis, plus 42% protection indoors and 40% outdoors against Anopheles funestus. Current prototypes cost ~ 7USD/hut, are made of widely-available hessian and require no specialized expertise. CONCLUSION: Transfluthrin-treated eave ribbons significantly prevented outdoor-biting and indoor-biting malaria vectors and could potentially complement current tools. The technique is simple, low-cost, highly-scalable and easy-to-use; making it suitable even for poorly-constructed houses and low-income groups.


Assuntos
Anopheles , Ciclopropanos , Fluorbenzenos , Mordeduras e Picadas de Insetos/prevenção & controle , Repelentes de Insetos , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores , Animais , Habitação , Controle de Mosquitos/métodos , Tanzânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...