Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(9): 11919-11926, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35225596

RESUMO

The complex behavior of the simplest atomic-scale conductors indicates that the electrode structure itself is significant in the design of future nanoscale devices. In this study, the structural asymmetry of metallic atomic contacts formed between two macroscopic Au electrodes at room temperature was investigated. Characteristic signatures of the structural asymmetries were detected by fast current-voltage (I-V) measurements with a time resolution of approximately 100 µs. Statistical analysis of more than 300,000 I-V curves obtained from more than 1000 contact-stretching processes demonstrates that the current rectification properties are correlated with the conductance of the nanocontacts. A substantial suppression of the variation in current rectification was observed for the atomic contacts with integer multiples of the conductance quantum. Statistical analysis of the time-resolved I-V curves revealed that the current rectification variations increased significantly from 500 µs onward before the breakage of the atomic contacts. Ab initio atomistic simulations of the stretching processes and corresponding I-V characteristics confirmed the magnitude of the rectification and related it to the structural asymmetries in the breakdown process of the junctions. Overall, we provide a better understanding of the interplay between geometric and electronic structures at atomically defined metal-metal interfaces by probing charge transport properties in extremely sensitive nanocontacts.

2.
ACS Omega ; 7(6): 5578-5583, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35187372

RESUMO

The characterization of single-molecule structures could provide significant insights into the operation mechanisms of functional devices. Structural transformation via isomerization has been extensively employed to implement device functionalities. Although single-molecule identification has recently been achieved using near-field spectroscopy, discrimination between isomeric forms remains challenging. Further, the structure-function relationship at the single-molecule scale remains unclear. Herein, we report the observation of the isomerization of spiropyran in a single-molecule junction (SMJ) using simultaneous surface-enhanced Raman scattering (SERS) and conductance measurements. SERS spectra were used to discriminate between isomers based on characteristic peaks. Moreover, conductance measurements, in conjunction with the principal component analysis of the SERS spectra, clearly showed the isomeric effect on the conductance of the SMJ.

3.
Nat Commun ; 12(1): 5762, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599166

RESUMO

The electrical properties of DNA have been extensively investigated within the field of molecular electronics. Previous studies on this topic primarily focused on the transport phenomena in the static structure at thermodynamic equilibria. Consequently, the properties of higher-order structures of DNA and their structural changes associated with the design of single-molecule electronic devices have not been fully studied so far. This stems from the limitation that only extremely short DNA is available for electrical measurements, since the single-molecule conductance decreases sharply with the increase in the molecular length. Here, we report a DNA zipper configuration to form a single-molecule junction. The duplex is accommodated in a nanogap between metal electrodes in a configuration where the duplex is perpendicular to the nanogap axis. Electrical measurements reveal that the single-molecule junction of the 90-mer DNA zipper exhibits high conductance due to the delocalized π system. Moreover, we find an attractive self-restoring capability that the single-molecule junction can be repeatedly formed without full structural breakdown even after electrical failure. The DNA zipping strategy presented here provides a basis for novel designs of single-molecule junctions.


Assuntos
DNA/química , Imagem Individual de Molécula , Simulação de Dinâmica Molecular , Análise Espectral
4.
Phys Chem Chem Phys ; 23(35): 19209-19218, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524281

RESUMO

The electronic and magnetic structures of diamond nanoparticles with a hydrogenated surface are investigated as a function of annealing temperature under vacuum annealing up to 800-1000 °C. Near edge X-ray absorption fine structure (NEXAFS) spectra together with elemental analysis show successive creation of defect-induced nonbonding surface states at the expense of surface-hydrogen atoms as the annealing temperature is increased above 800 °C. Magnetization and ESR spectra confirm the increase in the concentration of localized spins assigned to the nonbonding surface states upon the increase of the annealing temperature. Around 800 °C, surface defects collectively created upon the annealing result in the formation of graphene nano-islands which possess magnetic nonbonding edge states of π-electron origin. Interestingly, extremely slow spin relaxation is observed in the magnetization of the edge state spins at low temperatures. The relaxation time is well explained in terms of a lognormal distribution of magnetic anisotropy energies instead of the classical Néel relaxation mechanism with a unique magnetic anisotropy energy, in addition to the contribution of the quantum mechanical tunnelling mechanism. The spin-orbit interaction enhanced by the electrostatic potential gradient created at the interface between the core diamond particle and surface graphene nano-islands is responsible for the slow spin relaxation.

5.
Chem Sci ; 12(12): 4338-4344, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-34163696

RESUMO

Here, we report multinuclear organometallic molecular wires having (2,5-diethynylthiophene)diyl-Ru(dppe)2 repeating units. Despite the molecular dimensions of 2-4 nm the multinuclear wires show high conductance (up to 10-2 to 10-3 G 0) at the single-molecule level with small attenuation factors (ß) as revealed by STM-break junction measurements. The high performance can be attributed to the efficient energy alignment between the Fermi level of the metal electrodes and the HOMO levels of the multinuclear molecular wires as revealed by DFT-NEGF calculations. Electrochemical and DFT studies reveal that the strong Ru-Ru interaction through the bridging ligands raises the HOMO levels to access the Fermi level, leading to high conductance and small ß values.

6.
Small ; 17(28): e2008109, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34089231

RESUMO

Water splitting is an essential process for converting light energy into easily storable energy in the form of hydrogen. As environmentally preferable catalysts, Cu-based materials have attracted attention as water-splitting catalysts. To enhance the efficiency of water splitting, a reaction process should be developed. Single-molecule junctions (SMJs) are attractive structures for developing these reactions because the molecule electronic state is significantly modulated, and characteristic electromagnetic effects can be expected. Here, water splitting is induced at Cu-based SMJ and the produced hydrogen is characterized at a single-molecule scale by employing electron transport measurements. After visible light irradiation, the conductance states originate from Cu/hydrogen molecule/Cu junctions, while before irradiation, only Cu/water molecule/Cu junctions were observed. The vibration spectra obtained from inelastic electron tunneling spectroscopy combined with the first-principles calculations reveal that the water molecule trapped between the Cu electrodes is decomposed and that hydrogen is produced. Time-dependent and wavelength-dependent measurements show that localized-surface plasmon decomposes the water molecule in the vicinity of the junction. These findings indicate the potential ability of Cu-based materials for photocatalysis.

7.
Chem Commun (Camb) ; 57(36): 4380-4383, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33949386

RESUMO

We investigated a single-molecule reaction of DNA intercalation as an example of a bimolecular association reaction. Single-molecule conductance values of the product and reactant molecules adsorbed on an Au surface were measured to identify and quantify these molecules. The binding isotherm was constructed, and the association constant of the reaction was determined on a single-molecule basis.


Assuntos
DNA/análise , Ouro/química , Nanotecnologia , Adsorção , Condutividade Elétrica
8.
Inorg Chem ; 59(18): 13254-13261, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32806015

RESUMO

Single-molecule conductance studies on metal-containing inorganic and organometallic molecular wires are relatively less explored compared to those on organic molecular wires. Furthermore, conductance and transmission profiles of the metal-containing wires insensitive to the metal centers often hinder rational design for high performance wires. Here, synthesis and single-molecule conductance measurements of the bis(butadiynyl)rhodium wires with tetracarbene ligands 1H and 1Au are reported as rare examples for Rh(III) diacetylide molecular wires. The rhodium wires derived from the terminal acetylene and gold-functionalized precursors show comparable, high single-molecule conductance ((6-7) × 10-3 G0) as determined by the STM break-junction measurements, suggesting formation of virtually the same covalently linked metal electrode-molecule-metal electrode junctions. The values for the metallapolyynes are larger than those of the organic polyyne wires having the similar molecular lengths. The hybrid DFT-NEGF calculations of the model systems suggest that profiles of transmission spectra are highly sensitive to the presence and species of the metal fragments doped into the polyyne molecular wire because the conductance orbitals of the metallapolyynes molecular junctions carry significant metal fragment characters. Thus, the metallapolyyne junctions turn out to be suitable platforms for rationally designed molecular wires.

9.
Chemphyschem ; 21(4): 274, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32077556

RESUMO

The front cover artwork was provided by the group of Prof. Nishino, Tokyo Institute of Technology. The image depicts the investigation of the structure and electron transport of the Au, Ag, Cu, Ni, Fe, and Pd atomic junctions doped with dichloroethylene. Read the full text of the Article at 10.1002/cphc.201900988.

10.
Phys Chem Chem Phys ; 22(8): 4544-4548, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32048668

RESUMO

A single-molecule junction of 1,4-di(4-pyridyl)benzene (DPB) was prepared in a nano-gap between two Au electrodes using the scanning tunnelling microscopy-based break junction method (STM-BJ). Electric conductance and current versus bias voltage (I-V) measurements during the pulling and pushing processes of DPB single-molecule junctions revealed that high (H) and low (L) conductance states formed in both the pulling and pushing processes. Analysis of the I-V curves based on a single-level model indicated that the difference in conductivity of the H and L states mainly arises from high and low metal-molecule electric coupling in the junction. We demonstrated the controllable formation of H and L conductance states by simply tuning the velocity of electrode displacement in the pushing process. In the pulling process, both H and L states formed regardless of the velocity (v) of electrode displacement, while in the pushing process, H and L states could be selectively fabricated by using low (v = 16 nm s-1) and high (v = 64 nm s-1) velocities of displacement, respectively. This study provides a simple approach to selectively fabricate high and low conductance states by fine tuning of the electrode displacement.

11.
Chem Sci ; 12(6): 2217-2224, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34163987

RESUMO

Direct monitoring of single-molecule reactions has recently become a promising means of mechanistic investigation. However, the resolution of reaction pathways from single-molecule experiments remains elusive, primarily because of interference from extraneous processes such as bulk diffusion. Herein, we report a single-molecule kinetic investigation of DNA hybridization on a metal surface, as an example of a bimolecular association reaction. The tip of the scanning tunneling microscope (STM) was functionalized with single-stranded DNA (ssDNA), and hybridization with its complementary strand on an Au(111) surface was detected by the increase in the electrical conductance associated with the electron transport through the resulting DNA duplex. Kinetic analyses of the conductance changes successfully resolved the elementary processes, which involve not only the ssDNA strands and their duplex but also partially hybridized intermediate strands, and we found an increase in the hybridization efficiency with increasing the concentration of DNA in contrast to the knowledge obtained previously by conventional ensemble measurements. The rate constants derived from our single-molecule studies provide a rational explanation of these findings, such as the suppression of DNA melting on surfaces with higher DNA coverage. The present methodology, which relies on intermolecular conductance measurements, can be extended to a range of single-molecule reactions and to the exploration of novel chemical syntheses.

12.
Chemphyschem ; 21(2): 175-180, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31804753

RESUMO

We have investigated the structure and electron transport at dichloroethylene-doped metal atomic junctions at low temperatures (20 K) in ultra-high vacuum, using Fe, Ni, Pd, Cu, Ag, and Au. The metal atomic junctions were fabricated using the mechanically controllable break junction technique. After introducing the dichloroethylene (DCE), the conductance behavior of Fe, Ni, and Pd junctions was considerably changed, whereas little change was observed for Cu, Ag, and Au. For the Pd and Cu junctions, a clear peak was observed in their conductance histograms, showing that the single-molecule junction was selectively formed. To investigate the structure of the metal atomic junctions further, their plateau lengths were analyzed. The length analysis revealed that the Au atomic wire was elongated, and the metal atomic wires were formed for the other transition metals: those that do not normally form metal atomic wires without DCE doping, as DCE adsorption stabilized the metal atomic states. There is a strong interaction between DCE and the metals, where DCE supports the formation of the metal atomic wire for Fe, Ni, and Pd.

13.
Chem Commun (Camb) ; 56(2): 309-312, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31808760

RESUMO

Herein, we report on the kinetic investigation for the breakdown of single-molecule junctions. Current through the junctions was measured as a function of time to elucidate their lifetimes. The analysis of the lifetimes revealed that the breakdown reaction obeys first-order reaction kinetics, and the rate constants determined from the analysis were found to reflect the stability of the junctions.

14.
J Am Chem Soc ; 141(46): 18544-18550, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31670509

RESUMO

Molecular isomerism has been discussed from the viewpoint of the tiniest switch and memory elements in electronics. Here, we report an overcrowded ethylene-based molecular conductance switch, which fulfills all the essential requirements for implementation into electronic devices, namely, electric-field-controllable reversible conductance change with a molecular-level spatial resolution, robust conformational bistability under ambient conditions, and ordered monolayer formation on electrode surfaces. The conformational state of this overcrowded ethylene, represented by a folded or twisted conformer, is susceptible to external environments. Nanoscopic measurements using scanning tunneling microscopy techniques, together with theoretical simulations, revealed the electronic properties of each conformer adsorbed on Au(111). While the twisted conformer prevails in the molecularly dispersed state, upon self-assembly into a monolayer, a two-dimensional network structure of the folded conformer is preferentially formed due to particular intermolecular interaction. In the monolayer state, folded-to-twisted and its reverse isomerization can be controlled by the modulation of electric fields.

15.
Chem Sci ; 10(25): 6261-6269, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31367301

RESUMO

Single-molecule junctions are ideal test beds for investigating the fundamentals of charge transport at the nanoscale. Conducting properties are strongly dependent on the metal-molecule interface geometry, which, however, is very poorly characterized due to numerous experimental challenges. We report on a new methodology for characterizing the adsorption site of single-molecule junctions through the combination of surface enhanced Raman scattering (SERS), current-voltage (I-V) curve measurements, and density functional theory simulations. This new methodology discriminates between three different adsorption sites for benzenedithiol and aminobenzenethiol junctions, which cannot be identified by solo measurements of either SERS or I-V curves. Using this methodology, we determine the interface geometry of these two prototypical molecules at the junction and its time evolution. By modulating the applied voltage, we can change and monitor the distribution of adsorption sites at the junction.

16.
Phys Chem Chem Phys ; 21(23): 12606-12610, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31150031

RESUMO

It has been demonstrated that the single-molecule transport properties of fullerene C60 can be modulated by encapsulating endohedral species, i.e. Li+ and H2O, which exhibit different degrees of van der Waals interactions with the C60 cage. Single-molecule junctions were prepared between the gaps of Au electrodes using a break junction technique. Encapsulation of H2O inside the cage caused a slight decrease in the electronic conductivity relative to that of pristine C60. This is in sharp contrast to Li+ encapsulation, which results in a twofold-to-fourfold increase in the conductivity. The electronic couplings between the C60 cage and the Au electrodes were weakly dependent on the endohedral species in the cage, though the molecular orbital energy levels were remarkably modulated upon encapsulation.

17.
Angew Chem Int Ed Engl ; 58(27): 9109-9113, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31037805

RESUMO

Single-molecule devices attract much interest in the development of nanoscale electronics. Although a variety of functional single molecules for single-molecule electronics have been developed, there still remains the need to implement sophisticated functionalization toward practical applications. Given its superior functionality encountered in macroscopic materials, a polymer could be a useful building block in the single-molecule devices. Therefore, a molecular junction composed of polymer has now been created. Furthermore, an automated algorithm was developed to quantitatively analyze the tunneling current through the junction. Quantitative analysis revealed that the polymer junction exhibits a higher formation probability and longer lifetime than its monomer counterpart. These results suggest that the polymer provides a unique opportunity to design both stable and highly functional molecular devices for nanoelectronics.

18.
J Am Chem Soc ; 141(14): 5995-6005, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30869881

RESUMO

When employing self-assembled monolayers (SAMs) for tuning surface and interface properties, organic molecules that enable strong binding to the substrate, large-area structural uniformity, precise alignment of functional groups, and control of their density are highly desirable. To achieve these goals, tripod systems bearing multiple bonding sites have been developed as an alternative to conventional monodentate systems. Bonding of all three sites has, however, hardly been achieved, with the consequence that structural uniformity and orientational order in tripodal SAMs are usually quite poor. To overcome that problem, we designed 1,8,13-trimercaptomethyltriptycene (T1) and 1,8,13-trimercaptotriptycene (T2) as potential tripodal SAM precursors and investigated their adsorption behavior on Au(111) combining several advanced experimental techniques and state-of-the-art theoretical simulations. Both SAMs adopt dense, nested hexagonal structures but differ in their adsorption configurations and structural uniformity. While the T2-based SAM exhibits a low degree of order and noticeable deviation from the desired tripodal anchoring, all three anchoring groups of T1 are equally bonded to the surface as thiolates, resulting in an almost upright orientation of the benzene rings and large-area structural uniformity. These superior properties are attributed to the effect of conformationally flexible methylene linkers at the anchoring groups, absent in the case of T2. Both SAMs display interesting electronic properties, and, bearing in mind that the triptycene framework can be functionalized by tail groups in various positions and with high degree of alignment, especially T1 appears as an ideal docking platform for complex and highly functional molecular films.

19.
Micromachines (Basel) ; 9(2)2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30393343

RESUMO

The relationship between the current through an electronic device and the voltage across its terminals is a current⁻voltage characteristic (I⁻V) that determine basic device performance. Currently, I⁻V measurement on a single-molecule scale can be performed using break junction technique, where a single molecule junction can be prepared by trapping a single molecule into a nanogap between metal electrodes. The single-molecule I⁻Vs provide not only the device performance, but also reflect information on energy dispersion of the electronic state and the electron-molecular vibration coupling in the junction. This mini review focuses on recent representative studies on I⁻Vs of the single molecule junctions that cover investigation on the single-molecule diode property, the molecular vibration, and the electronic structure as a form of transmission probability, and electronic density of states, including the spin state of the single-molecule junctions. In addition, thermoelectronic measurements based on I⁻Vs and identification of the charged carriers (i.e., electrons or holes) are presented. The analysis in the single-molecule I⁻Vs provides fundamental and essential information for a better understanding of the single-molecule science, and puts the single molecule junction to more practical use in molecular devices.

20.
Proc Jpn Acad Ser B Phys Biol Sci ; 94(9): 350-359, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416175

RESUMO

A single molecular junction is a nanoscale structure prepared by bridging a single molecule between macroscopic metal electrodes. It has attracted significant attention due to its unique structure and potential applications in ultra-small single molecular electronic devices. It has two metal-molecule interfaces, and thus the electronic structure of the molecule can be significantly modulated from its original one. The single molecular junction can be regarded as a new material that includes metal electrodes, a so-called "double interface material". Therefore, we can expect unconventional physical and chemical properties. To develop a better understanding of the properties and functionalities of single molecular junctions, their atomic and electronic structures should be characterized. In this review, we describe the development of these characterization techniques, such as inelastic electron tunneling spectroscopy, surface-enhanced Raman scattering, as well as shot noise and thermopower measurements. We have also described some unique properties and functionalities of single molecular junctions, such as switching and diode properties.


Assuntos
Técnicas Eletroquímicas/instrumentação , Eletrodos , Metais/química , Nanoestruturas/química , Imagem Individual de Molécula/instrumentação , Condutividade Elétrica , Desenho de Equipamento/instrumentação , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...