Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473821

RESUMO

Mutated genes may lead to cancer development in numerous tissues. While more than 600 cancer-causing genes are known today, some of the most widespread mutations are connected to the RAS gene; RAS mutations are found in approximately 25% of all human tumors. Specifically, KRAS mutations are involved in the three most lethal cancers in the U.S., namely pancreatic ductal adenocarcinoma, colorectal adenocarcinoma, and lung adenocarcinoma. These cancers are among the most difficult to treat, and they are frequently excluded from chemotherapeutic attacks as hopeless cases. The mutated KRAS proteins have specific three-dimensional conformations, which perturb functional interaction with the GAP protein on the GAP-RAS complex surface, leading to a signaling cascade and uncontrolled cell growth. Here, we describe a gluing docking method for finding small molecules that bind to both the GAP and the mutated KRAS molecules. These small molecules glue together the GAP and the mutated KRAS molecules and may serve as new cancer drugs for the most lethal, most difficult-to-treat, carcinomas. As a proof of concept, we identify two new, drug-like small molecules with the new method; these compounds specifically inhibit the growth of the PANC-1 cell line with KRAS mutation G12D in vitro and in vivo. Importantly, the two new compounds show significantly lower IC50 and higher specificity against the G12D KRAS mutant human pancreatic cancer cell line PANC-1, as compared to the recently described selective G12D KRAS inhibitor MRTX-1133.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/patologia , Adenocarcinoma/genética , Desenvolvimento de Medicamentos
2.
Cells ; 12(14)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37508582

RESUMO

Malignant melanoma is challenging to treat, and metastatic cases need chemotherapy strategies. Targeted inhibition of commonly mutant BRAF V600E by inhibitors is efficient but eventually leads to resistance and progression in the vast majority of cases. Numerous studies investigated the mechanisms of resistance in melanoma cell lines, and an increasing number of in vivo or clinical data are accumulating. In most cases, bypassing BRAF and resulting reactivation of the MAPK signaling, as well as alternative PI3K-AKT signaling activation are reported. However, several unique changes were also shown. We developed and used a patient-derived tumor xenograft (PDTX) model to screen resistance evolution in mice in vivo, maintaining tumor heterogeneity. Our results showed no substantial activation of the canonical pathways; however, RNAseq and qPCR data revealed several altered genes, such as GPR39, CD27, SLC15A3, IFI27, PDGFA, and ABCB1. Surprisingly, p53 activity, leading to apoptotic cell death, was unchanged. The found biomarkers can confer resistance in a subset of melanoma patients via immune modulation, microenvironment changes, or drug elimination. Our resistance model can be further used in testing specific inhibitors that could be used in future drug development, and combination therapy testing that can overcome inhibitor resistance in melanoma.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Vemurafenib , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Fosfatidilinositol 3-Quinases/genética , Receptores Acoplados a Proteínas G/genética , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico
3.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361906

RESUMO

Alzheimer's disease (AD) is a complex and widespread condition, still not fully understood and with no cure yet. Amyloid beta (Aß) peptide is suspected to be a major cause of AD, and therefore, simultaneously blocking its formation and aggregation by inhibition of the enzymes BACE-1 (ß-secretase) and AChE (acetylcholinesterase) by a single inhibitor may be an effective therapeutic approach, as compared to blocking one of these targets or by combining two drugs, one for each of these targets. We used our ISE algorithm to model each of the AChE peripheral site inhibitors and BACE-1 inhibitors, on the basis of published data, and constructed classification models for each. Subsequently, we screened large molecular databases with both models. Top scored molecules were docked into AChE and BACE-1 crystal structures, and 36 Molecules with the best weighted scores (based on ISE indexes and docking results) were sent for inhibition studies on the two enzymes. Two of them inhibited both AChE (IC50 between 4-7 µM) and BACE-1 (IC50 between 50-65 µM). Two additional molecules inhibited only AChE, and another two molecules inhibited only BACE-1. Preliminary testing of inhibition by F681-0222 (molecule 2) on APPswe/PS1dE9 transgenic mice shows a reduction in brain tissue of soluble Aß42.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Camundongos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase , Secretases da Proteína Precursora do Amiloide/metabolismo , Encéfalo/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...