Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202408358, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984565

RESUMO

Alloying is an effective method for modulating metal nanoclusters to enrich their structural diversity and physicochemical properties. Recent investigations have demonstrated that polyoxometalates (POMs) can act as effective multidentate ligands for silver (Ag) nanoclusters to endow them with synergistic properties, reactivity, catalytic properties, and stability. However, the application of POMs as ligands has been confined predominantly to monometallic nanoclusters. Herein, we report a synthetic method for fabricating surface-exposed gold (Au)-Ag alloy nanoclusters within a ring-shaped POM ([P8W48O184]40-). Reacting an Ag nanocluster stabilized by the ring-shaped POM with Au ions (Au+) was found to substitute several Ag atoms at the core of the nanocluster with Au atoms. The resultant {Au8Ag26} alloy nanocluster demonstrated superior photocatalytic activity and stability compared to the pristine Ag nanocluster in the aerobic oxidation of α-terpinene under visible-light irradiation. These findings provide fundamental insights into the formation and catalytic properties of POM-stabilized alloy nanoclusters and advance exploration into the synthesis and applications of diverse metal nanoclusters.

2.
J Am Chem Soc ; 146(21): 14610-14619, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682247

RESUMO

Cu nanoclusters exhibit distinctive physicochemical properties and hold significant potential for multifaceted applications. Although Cu nanoclusters are synthesized by reacting Cu ions and reducing agents by covering their surfaces using organic protecting ligands or supporting them inside porous materials, the synthesis of surface-exposed Cu nanoclusters with a controlled number of Cu atoms remains challenging. This study presents a solid-state reduction method for the synthesis of Cu nanoclusters employing a ring-shaped polyoxometalate (POM) as a structurally defined and rigid molecular nanoreactor. Through the reduction of Cu2+ incorporated within the cavity of a ring-shaped POM using H2 at 140 °C, spectroscopic studies and single-crystal X-ray diffraction analysis revealed the formation of surface-exposed Cu nanoclusters with a defined number of Cu atoms within the cavities of POMs. Furthermore, the Cu nanoclusters underwent a reversible redox transformation within the cavity upon alternating the gas atmosphere (i.e., H2 or O2). These Cu nanoclusters produced active hydrogen species that can efficiently hydrogenate various functional groups such as alkenes, alkynes, carbonyls, and nitro groups using H2 as a reductant. We expect that this synthesis approach will facilitate the development of a wide variety of metal nanoclusters with high reactivity and unexplored properties.

3.
Nat Commun ; 15(1): 851, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321026

RESUMO

Owing to their remarkable properties, gold nanoparticles are applied in diverse fields, including catalysis, electronics, energy conversion and sensors. However, for catalytic applications of colloidal gold nanoparticles, the trade-off between their reactivity and stability is a significant concern. Here we report a universal approach for preparing stable and reactive colloidal small (~3 nm) gold nanoparticles by using multi-dentate polyoxometalates as protecting agents in non-polar solvents. These nanoparticles exhibit exceptional stability even under conditions of high concentration, long-term storage, heating and addition of bases. Moreover, they display excellent catalytic performance in various oxidation reactions of organic substrates using molecular oxygen as the sole oxidant. Our findings highlight the ability of inorganic multi-dentate ligands with structural stability and robust steric and electronic effects to confer stability and reactivity upon gold nanoparticles. This approach can be extended to prepare metal nanoparticles other than gold, enabling the design of novel nanomaterials with promising applications.

4.
Angew Chem Int Ed Engl ; 63(17): e202401526, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388816

RESUMO

Here, doubly protonated Lindqvist-type niobium oxide cluster [H2(Nb6O19)]6-, fabricated by microwave-assisted hydrothermal synthesis, exhibited superbase catalysis for Knoevenagel and crossed aldol condensation reactions accompanied by activating C-H bond with pKa >26 and proton abstraction from a base indicator with pKa=26.5. Surprisingly, [H2(Nb6O19)]6- exhibited water-tolerant superbase properties for Knoevenagel and crossed aldol condensation reactions in the presence of water, although it is well known that the strong basicity of metal oxides and organic superbase is typically lost by the adsorption of water. Density functional theory calculation revealed that the basic surface oxygens that share the corner of NbO6 units in [H2(Nb6O19)]8- maintained the negative charges even after proton adsorption. This proton capacity and the presence of un-protonated basic sites led to the water tolerance of the superbase catalysis.

5.
Chemistry ; 29(63): e202302303, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37553318

RESUMO

Synthetic strategies to access high-valent iridium complexes usually require use of π donating ligands bearing electronegative atoms (e. g. amide or oxide) or σ donating electropositive atoms (e. g. boryl or hydride). Besides the η5 -(methyl)cyclopentadienyl derivatives, high-valent η1 carbon-ligated iridium complexes are challenging to synthesize. To meet this challenge, this work reports the oxidation behavior of an all-carbon-ligated anionic bis(CCC-pincer) IrIII complex. Being both σ and π donating, the diaryl dipyrido-annulated N-heterocyclic carbene (dpa-NHC) IrIII complex allowed a stepwise 4e- oxidation sequence. The first 2e- oxidation led to an oxidative coupling of two adjacent aryl groups, resulting in formation of a cationic chiral IrIII complex bearing a CCCC-tetradentate ligand. A further 2e- oxidation allowed isolation of a high-valent tricationic complex with a triplet ground state. These results close a synthetic gap for carbon-ligated iridium complexes and demonstrate the electronic tuning potential of organic π ligands for unusual electronic properties.

6.
Commun Chem ; 6(1): 129, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340116

RESUMO

Controlling the geometric structures of metal clusters through structural isomerization allows for tuning of their electronic state. In this study, we successfully synthesized butterfly-motif [PdAu8(PPh3)8]2+ (PdAu8-B, B means butterfly-motif) and [PtAu8(PPh3)8]2+ (PtAu8-B) by the structural isomerization from crown-motif [PdAu8(PPh3)8]2+ (PdAu8-C, C means crown-motif) and [PtAu8(PPh3)8]2+ (PtAu8-C), induced by association with anionic polyoxometalate, [Mo6O19]2- (Mo6) respectively, whereas their structural isomerization was suppressed by the use of [NO3]- and [PMo12O40]3- as counter anions. DR-UV-vis-NIR and XAFS analyses and density functional theory calculations revealed that the synthesized [PdAu8(PPh3)8][Mo6O19] (PdAu8-Mo6) and [PtAu8(PPh3)8][Mo6O19] (PtAu8-Mo6) had PdAu8-B and PtAu8-B respectively because PdAu8-Mo6 and PtAu8-Mo6 had bands in optical absorption at the longer wavelength region and different structural parameters characteristic of the butterfly-motif structure obtained by XAFS analysis. Single-crystal and powder X-ray diffraction analyses revealed that PdAu8-B and PtAu8-B were surrounded by six Mo6 with rock salt-type packing, which stabilizes the semi-stable butterfly-motif structure to overcome high activation energy for structural isomerization.

7.
Small ; 19(34): e2208287, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093189

RESUMO

For the realization of a next-generation energy society, further improvement in the activity of water-splitting photocatalysts is essential. Platinum (Pt) is predicted to be the most effective cocatalyst for hydrogen evolution from water. However, when the number of active sites is increased by decreasing the particle size, the Pt cocatalyst is easily oxidized and thereby loses its activity. In this study, a method to load ultrafine, monodisperse, metallic Pt nanoclusters (NCs) on graphitic carbon nitride is developed, which is a promising visible-light-driven photocatalyst. In this photocatalyst, a part of the surface of the Pt NCs is protected by sulfur atoms, preventing oxidation. Consequently, the hydrogen-evolution activity per loading weight of Pt cocatalyst is significantly improved, 53 times, compared with that of a Pt-cocatalyst loaded photocatalyst by the conventional method. The developed method is also effective to enhance the overall water-splitting activity of other advanced photocatalysts such as SrTiO3 and BaLa4 Ti4 O15 .

8.
Small ; 19(23): e2300743, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36828792

RESUMO

Ag clusters with a controlled number of atoms have received significant interest because they show size-dependent catalytic, optical, electronic, or magnetic properties. However, the synthesis of size-controlled, ligand-free, and air-stable Ag clusters with high yields has not been well-established. Herein, it is shown that isostructural porous ionic crystals (PICs) with redox-active polyoxometalates (POMs) can be used to synthesize Ag clusters via electron transfer from POMs to Ag+ . Ag clusters with average numbers of three, four, or six atoms emitting blue, green, or red colors, respectively, are formed and stabilized in the PICs under ambient conditions without any protecting ligands. The cluster size solely correlates with the degree of electron transfer, which is controlled by the reduction time and types of ions or elements of the PICs. Thus, advantages have been taken of POMs as electron sources and PICs as scaffolds to demonstrate a convenient method to obtain few-atom Ag clusters.

9.
Nanoscale ; 15(11): 5201-5208, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36789780

RESUMO

Practical electrochemical water splitting and carbon-dioxide reduction are desirable for a sustainable energy society. In particular, facilitating the oxygen evolution reaction (OER, the reaction at the anode) will increase the efficiency of these reactions. Nickel (Ni) compounds are excellent OER catalysts under basic conditions, and atomically precise Ni clusters have been actively studied to understand their complex reaction mechanisms. In this study, we evaluated the geometric/electronic structure of tiara-like metal nanoclusters [Nin(PET)2n; n = 4, 5, 6, where PET refers to phenylethanethiolate] with the same SR ligand. The geometric structure of Ni5(SR)10 was determined for the first time using single-crystal X-ray diffraction. Additionally, combined electrochemical measurements and X-ray absorption fine structure measurements revealed that Ni5(SR)10 easily forms an OER intermediate and therefore exhibits a high specific activity.

10.
J Am Chem Soc ; 144(27): 12310-12320, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35776692

RESUMO

Organic ligands on gold nanoclusters play important roles in regulating the structures of gold cores. However, the impact of the number and positions of the protecting ligands on gold-core structures remains unclear. We isolated thiolate-protected Au25 cluster anions, [Au25(SC2Ph)17(Por)1]- and [Au25(SC2Ph)16(Por)2]- (SC2Ph = 2-phenylethanethiolate), obtained by ligand exchange of [Au25(SC2Ph)18]- with one or two porphyrinthiolate (Por) ligands as mixtures of regioisomers. The ratio of two regioisomers in [Au25(SC2Ph)17(Por)1]- as measured by 1H NMR spectroscopy revealed that the selectivity could be controlled by the steric hindrance of the incoming thiols. Extended X-ray absorption fine structure studies of a series of porphyrin-coordinated gold nanoclusters clarified that the Au13 icosahedral core in the Au25 cluster was distorted through steric repulsion between porphyrin thiolates and phenylethanethiolates. This paper reveals interesting insights into the importance of the steric structures of protecting ligands for control over core structures in gold nanoclusters.


Assuntos
Ouro , Porfirinas , Ouro/química , Ligantes , Compostos de Sulfidrila/química
11.
Chem Commun (Camb) ; 58(64): 9018-9021, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35866742

RESUMO

A catalyst prepared by modifying the surface of Au nanoparticles (NPs) on Al2O3 with [Nb6O19]8- clusters had specific base and reduction abilities, and the reduction of p-nitrophenol to p-aminophenol using H2 as a reductant proceeded efficiently with the dual functional catalyst. At the interface between Au NPs and basic [Nb6O19]8-, heterolytically cleaved hydrogen species are generated, which can efficiently react with nitrophenolate ions generated by base catalysis. Moreover, this surface modification strategy was applicable to the reduction of other nitro compounds.

12.
Angew Chem Int Ed Engl ; 61(34): e202205873, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35644917

RESUMO

Although supported anionic gold nanoparticle catalysts have been theoretically investigated for their efficacy in activating O2 in aerobic oxidation reactions, limited studies have been reported due to the difficulty of designing these catalysts. Herein, we developed a feasible method for preparing supported anionic gold nanoparticle catalysts using multivacant lacunary polyoxometalates with high negative charges. We confirmed the strong and robust electronic interaction between gold nanoparticles and multivacant lacunary polyoxometalates, and the electronic states of the supported gold nanoparticle catalysts can be sequentially modulated. Particularly, the catalyst prepared using [SiW9 O34 ]10- acted as an efficient reusable heterogeneous catalyst, showing superior catalytic performance for the oxidative dehydrogenation of piperidone derivatives to the corresponding enaminones and remarkably higher stability than supported gold nanoparticle catalysts without this modification.

13.
Chem Sci ; 13(19): 5557-5561, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35694364

RESUMO

The properties of metal nanoclusters depend on both their structures and electronic states. However, in contrast to the significant advances achieved in the synthesis of structurally well-defined metal nanoclusters, systematic control of their electronic states is still challenging. In particular, stimuli-responsive and reversible control of the electronic states of metal nanoclusters is attractive from the viewpoint of their practical applications. Recently, we developed a synthesis method for atomically precise Ag nanoclusters using polyoxometalates (POMs) as inorganic ligands. Herein, we exploited the acid/base nature of POMs to reversibly change the electronic states of an atomically precise {Ag27} nanocluster via protonation/deprotonation of the surrounding POM ligands. We succeeded in systematically controlling the electronic states of the {Ag27} nanocluster by adding an acid or a base (0-6 equivalents), which was accompanied by drastic changes in the ultraviolet-visible absorption spectra of the nanocluster solutions. These results demonstrate the great potential of Ag nanoclusters for unprecedented applications in various fields such as sensing, biolabeling, electronics, and catalysis.

14.
ACS Environ Au ; 2(4): 354-362, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37101968

RESUMO

The phase separation between a liquid amine and the solid carbamic acid exhibited >99% CO2 removal efficiency under a 400 ppm CO2 flow system using diamines bearing an aminocyclohexyl group. Among them, isophorone diamine [IPDA; 3-(aminomethyl)-3,5,5-trimethylcyclohexylamine] exhibited the highest CO2 removal efficiency. IPDA reacted with CO2 in a CO2/IPDA molar ratio of ≥1 even in H2O as a solvent. The captured CO2 was completely desorbed at 333 K because the dissolved carbamate ion releases CO2 at low temperatures. The reusability of IPDA under CO2 adsorption-and-desorption cycles without degradation, the >99% efficiency kept for 100 h under direct air capture conditions, and the high CO2 capture rate (201 mmol/h for 1 mol of amine) suggest that the phase separation system using IPDA is robust and durable for practical use.

15.
Nanoscale ; 13(35): 14679-14687, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34558590

RESUMO

The improvement of oxygen reduction reaction (ORR) catalysts is essential before polymer electrolyte fuel cells can be used widely. To this end, we established a simple method for the size-selective synthesis of a series of ligand-protected platinum nanoclusters with ∼1 nm particle size (Ptn NCs; n = ∼35, ∼51, and ∼66) and narrow size distribution (±âˆ¼4 Pt atoms) under atmospheric conditions. Using this method, each ligand-protected ∼1 nm Pt NC was obtained in a relatively high yield (nearly 80% for Pt∼66). We succeeded in adsorbing each ligand-protected ∼1 nm Pt NC on carbon black (CB) and then removing most of the ligands from the surface of the Pt NCs via calcination while maintaining the original size. The obtained Pt∼35/CB, Pt∼51/CB, and Pt∼66/CB exhibited ORR mass activities that were 1.6, 2.1, and 1.6 times higher, respectively, than that of commercial CB supported-Pt nanoparticles, and also display high durability.

16.
J Chem Phys ; 155(4): 044307, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34340395

RESUMO

The thermal behaviors of ligand-protected metal clusters, [Au9(PPh3)8]3+ and [MAu8(PPh3)8]2+ (M = Pd, Pt) with a crown-motif structure, were investigated to determine the effects of the gas composition, single-atom doping, and counter anions on the thermal stability of these clusters. We successfully synthesized crown-motif [PdAu8(PPh3)8][HPMo12O40] (PdAu8-PMo12) and [PtAu8(PPh3)8][HPMo12O40] (PtAu8-PMo12) salts with a cesium-chloride-type structure, which is the same as the [Au9(PPh3)8][PMo12O40] (Au9-PMo12) structure. Thermogravimetry-differential thermal analysis/mass spectrometry analysis revealed that the crown-motif structure of Au9-PMo12 was decomposed at ∼475 K without weight loss to form Au nanoparticles. After structural decomposition, the ligands were desorbed from the sample. The ligand desorption temperature of Au9-PMo12 increased under 20% O2 conditions because of the formation of Au nanoparticles and stronger interaction of the formed O=PPh3 than PPh3. The Pd and Pt single-atom doping improved the thermal stability of the clusters. This improvement was due to the formation of a large bonding index of M-Au and a change in Au-PPh3 bonding energy by heteroatom doping. Moreover, we found that the ligand desorption temperatures were also affected by the type of counter anions, whose charge and size influence the localized Coulomb interaction and cluster packing between the cationic ligand-protected metal clusters and counter anions.

17.
Angew Chem Int Ed Engl ; 60(39): 21340-21350, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34038609

RESUMO

Recently, the creation of new heterogeneous catalysts using the unique electronic/geometric structures of small metal nanoclusters (NCs) has received considerable attention. However, to achieve this, it is extremely important to establish methods to remove the ligands from ligand-protected metal NCs while preventing the aggregation of metal NCs. In this study, the ligand-desorption process during calcination was followed for metal-oxide-supported 2-phenylethanethiolate-protected gold (Au) 25-atom metal NCs using five experimental techniques. The results clearly demonstrate that the ligand-desorption process consists of ligand dissociation on the surface of the metal NCs, adsorption of the generated compounds on the support and desorption of the compounds from the support, and the temperatures at which these processes occurred were elucidated. Based on the obtained knowledge, we established a method to form a metal-oxide layer on the surface of Au NCs while preventing their aggregation, thereby succeeding in creating a water-splitting photocatalyst with high activity and stability.

18.
RSC Adv ; 10(14): 8066-8073, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35497863

RESUMO

Imparting an enhanced CO2 reduction selectivity to ZnGa2O4 photocatalysts has been demonstrated by controlled crystallization from interdispersed nanoparticles of zinc and gallium hydroxides. The hydroxide precursor in which Zn(ii) and Ga(iii) are homogeneously interdispersed was prepared through an epoxide-driven sol-gel reaction. ZnGa2O4 obtained by a heat-treatment exhibits a higher surface basicity and an enhanced affinity for CO2 molecules than previously-reported standard ZnGa2O4. The enhanced affinity for CO2 molecules of the resultant ZnGa2O4 leads to highly-selective CO evolution in CO2 photo-reduction with H2O reductants. The present scheme is promising to achieve desirable surface chemistry on metal oxide photocatalysts.

19.
Phys Chem Chem Phys ; 18(20): 13811-9, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27145887

RESUMO

Layered double hydroxide (LDH) photocatalysts, including Ni-Al LDH, are active for the photocatalytic conversion of CO2 in water under UV light irradiation. In this study, we found that a series of LDHs exhibited anodic photocurrent which is a characteristic feature corresponding to n-type materials. Also, we estimated the potentials of photogenerated electrons and holes for LDHs, which are responsible for the photocatalytic reactions, using electrochemical techniques. The flat band potential of the Ni-Al LDH photocatalyst was estimated to be -0.40 V vs. NHE (pH = 0), indicating that the potential of the photogenerated electron is sufficient to reduce CO2 to CO. Moreover, we revealed that the flat band potentials of M(2+)-M(3+) LDH are clearly influenced by the type of trivalent metal (M(3+)) components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...