Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 43(5): 754-779, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287189

RESUMO

Tank-binding kinase 1 (TBK1) is a Ser/Thr kinase that is involved in many intracellular processes, such as innate immunity, cell cycle, and apoptosis. TBK1 is also important for phosphorylating the autophagy adaptors that mediate the selective autophagic removal of damaged mitochondria. However, the mechanism by which PINK1-Parkin-mediated mitophagy activates TBK1 remains largely unknown. Here, we show that the autophagy adaptor optineurin (OPTN) provides a unique platform for TBK1 activation. Both the OPTN-ubiquitin and the OPTN-pre-autophagosomal structure (PAS) interaction axes facilitate assembly of the OPTN-TBK1 complex at a contact sites between damaged mitochondria and the autophagosome formation sites. At this assembly point, a positive feedback loop for TBK1 activation is initiated that accelerates hetero-autophosphorylation of the protein. Expression of monobodies engineered here to bind OPTN impaired OPTN accumulation at contact sites, as well as the subsequent activation of TBK1, thereby inhibiting mitochondrial degradation. Taken together, these data show that a positive and reciprocal relationship between OPTN and TBK1 initiates autophagosome biogenesis on damaged mitochondria.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Membrana Transportadoras , Membranas Mitocondriais , Mitofagia , Humanos , Autofagia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
2.
J Biol Chem ; 299(2): 102822, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563856

RESUMO

RING-between RING (RBR)-type ubiquitin (Ub) ligases (E3s) such as Parkin receive Ub from Ub-conjugating enzymes (E2s) in response to ligase activation. However, the specific E2s that transfer Ub to each RBR-type ligase are largely unknown because of insufficient methods for monitoring their interaction. To address this problem, we have developed a method that detects intracellular interactions between E2s and activated Parkin. Fluorescent homotetramer Azami-Green fused with E2 and oligomeric Ash (Assembly helper) fused with Parkin form a liquid-liquid phase separation (LLPS) in cells only when E2 and Parkin interact. Using this method, we identified multiple E2s interacting with activated Parkin on damaged mitochondria during mitophagy. Combined with in vitro ubiquitination assays and bioinformatics, these findings revealed an underlying consensus sequence for E2 interactions with activated Parkin. Application of this method to other RBR-type E3s including HOIP, HHARI, and TRIAD1 revealed that HOIP forms an LLPS with its substrate NEMO in response to a proinflammatory cytokine and that HHARI and TRIAD1 form a cytosolic LLPS independent of Ub-like protein NEDD8. Since an E2-E3 interaction is a prerequisite for RBR-type E3 activation and subsequent substrate ubiquitination, the method we have established here can be an in-cell tool to elucidate the potentially novel mechanisms involved in RBR-type E3s.


Assuntos
Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/isolamento & purificação , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/isolamento & purificação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ligação Proteica , Mitofagia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Quinase I-kappa B/metabolismo
3.
Autophagy ; 17(8): 2011-2036, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33499712

RESUMO

Macroautophagy/autophagy is an intracellular degradation process that delivers cytosolic materials and/or damaged organelles to lysosomes. De novo synthesis of the autophagosome membrane occurs within a phosphatidylinositol-3-phosphate-rich region of the endoplasmic reticulum, and subsequent expansion is critical for cargo encapsulation. This process is complex, especially in mammals, with many regulatory factors. In this study, by utilizing PRKN (parkin RBR E3 ubiquitin protein ligase)-mediated mitochondria autophagy (mitophagy)-inducing conditions in conjunction with chemical crosslinking and mass spectrometry, we identified human BCAS3 (BCAS3 microtubule associated cell migration factor) and C16orf70 (chromosome 16 open reading frame 70) as novel proteins that associate with the autophagosome formation site during both non-selective and selective autophagy. We demonstrate that BCAS3 and C16orf70 form a complex and that their association with the phagophore assembly site requires both proteins. In silico structural modeling, mutational analyses in cells and in vitro phosphoinositide-binding assays indicate that the WD40 repeat domain in human BCAS3 directly binds phosphatidylinositol-3-phosphate. Furthermore, overexpression of the BCAS3-C16orf70 complex affects the recruitment of several core autophagy proteins to the phagophore assembly site. This study demonstrates regulatory roles for human BCAS3 and C16orf70 in autophagic activity.Abbreviations: AO: antimycin A and oligomycin; Ash: assembly helper; ATG: autophagy-related; BCAS3: BCAS3 microtubule associated cell migration factor; C16orf70: chromosome 16 open reading frame 70; DAPI: 4',6-diamidino-2-phenylindole; DKO: double knockout; DMSO: dimethyl sulfoxide; ER: endoplasmic reticulum; fluoppi: fluorescent-based technology detecting protein-protein interactions; FIS1: fission, mitochondrial 1; FKBP: FKBP prolyl isomerase family member 1C; FRB: FKBP-rapamycin binding; hAG: humanized azami-green; IP: immunoprecipitation; IRES: internal ribosome entry site; KO: knockout; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MFN2: mitofusin 2; MS: mass spectrometry; MT-CO2: mitochondrially encoded cytochrome c oxidase II; mtDNA: mitochondrial DNA; OPTN: optineurin; PFA: paraformaldehyde; PE: phosphatidylethanolamine; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns(3,5)P2: phosphatidylinositol-3,5-bisphosphate; PINK1: PTEN induced kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; PROPPIN: ß-propellers that bind polyphosphoinositides; RB1CC1/FIP200: RB1 inducible coiled-coil 1; TOMM20: translocase of outer mitochondrial membrane 20; ULK1: unc-51 like autophagy activating kinase 1; WDR45B/WIPI3: WD repeat domain 45B; WDR45/WIPI4: WD repeat domain 45; WIPI: WD repeat domain, phosphoinositide interacting; WT: wild type; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.


Assuntos
Autofagossomos/metabolismo , Autofagia/fisiologia , Lisossomos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Humanos , Macroautofagia , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Organelas/metabolismo
4.
J Cell Biol ; 219(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32556086

RESUMO

Damaged mitochondria are selectively eliminated in a process called mitophagy. Parkin and PINK1, proteins mutated in Parkinson's disease, amplify ubiquitin signals on damaged mitochondria with the subsequent activation of autophagic machinery. Autophagy adaptors are thought to link ubiquitinated mitochondria and autophagy through ATG8 protein binding. Here, we establish methods for inducing mitophagy by mitochondria-targeted ubiquitin chains and chemical-induced mitochondrial ubiquitination. Using these tools, we reveal that the ubiquitin signal is sufficient for mitophagy and that PINK1 and Parkin are unnecessary for autophagy activation per se. Furthermore, using phase-separated fluorescent foci, we show that the critical autophagy adaptor OPTN forms a complex with ATG9A vesicles. Disruption of OPTN-ATG9A interactions does not induce mitophagy. Therefore, in addition to binding ATG8 proteins, the critical autophagy adaptors also bind the autophagy core units that contribute to the formation of multivalent interactions in the de novo synthesis of autophagosomal membranes near ubiquitinated mitochondria.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Mitofagia/fisiologia , Ubiquitinação/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Autofagia/fisiologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Mamíferos/metabolismo , Mamíferos/fisiologia , Proteínas Quinases/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
Elife ; 72018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29360040

RESUMO

Damaged mitochondria are selectively eliminated by mitophagy. Parkin and PINK1, gene products mutated in familial Parkinson's disease, play essential roles in mitophagy through ubiquitination of mitochondria. Cargo ubiquitination by E3 ubiquitin ligase Parkin is important to trigger selective autophagy. Although autophagy receptors recruit LC3-labeled autophagic membranes onto damaged mitochondria, how other essential autophagy units such as ATG9A-integrated vesicles are recruited remains unclear. Here, using mammalian cultured cells, we demonstrate that RABGEF1, the upstream factor of the endosomal Rab GTPase cascade, is recruited to damaged mitochondria via ubiquitin binding downstream of Parkin. RABGEF1 directs the downstream Rab proteins, RAB5 and RAB7A, to damaged mitochondria, whose associations are further regulated by mitochondrial Rab-GAPs. Furthermore, depletion of RAB7A inhibited ATG9A vesicle assembly and subsequent encapsulation of the mitochondria by autophagic membranes. These results strongly suggest that endosomal Rab cycles on damaged mitochondria are a crucial regulator of mitophagy through assembling ATG9A vesicles.


Assuntos
Endossomos/enzimologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mitofagia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Mapas de Interação de Proteínas , Proteínas de Transporte Vesicular/metabolismo , proteínas de unión al GTP Rab7
6.
Neurochem Res ; 43(2): 324-339, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29164431

RESUMO

The responses of inhibitory neurons/synapses to motoneuron injury in the cranial nervous system remain to be elucidated. In this study, we analyzed GABAA receptor (GABAAR) and GABAergic neurons at the protein level in the transected rat facial nucleus. Immunoblotting revealed that the GABAARα1 protein levels in the axotomized facial nucleus decreased significantly 5-14 days post-insult, and these levels remained low for 5 weeks. Immunohistochemical analysis indicated that the GABAARα1-expressing cells were motoneurons. We next examined the specific components of GABAergic neurons, including glutamate decarboxylase (GAD), vesicular GABA transporter (VGAT) and GABA transporter-1 (GAT-1). Immunoblotting indicated that the protein levels of GAD, VGAT and GAT-1 decreased transiently in the transected facial nucleus from 5 to 14 days post-insult, but returned to the control levels at 5 weeks post-insult. Although GABAARα1 protein levels in the transected nucleus did not return to their control levels for 5 weeks post-insult, the administration of glial cell line-derived neurotrophic factor at the cut site significantly ameliorated the reductions. Through these findings, we verified that the injured facial motoneurons suppressed the levels of GABAARα1 protein over the 5 weeks post-insult, presumably due to the deprivation of neurotrophic factor. On the other hand, the levels of the GAD, VGAT and GAT-1 proteins in GABAergic neurons were transiently reduced in the axotomized facial nucleus at 5-14 days post-insult, but recovered at 4-5 weeks post-insult.


Assuntos
Nervo Facial/metabolismo , Neurônios GABAérgicos/metabolismo , Sinapses/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Animais , Axotomia , Glutamato Descarboxilase/metabolismo , Neurônios Motores/metabolismo , Ratos , Fatores de Tempo
7.
Brain Res ; 1507: 35-44, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23458505

RESUMO

Functional alterations in injured motoneurons were quantitatively analyzed in axotomized rat facial nuclei. Choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAchT) and m2 muscarinic acetylcholine receptor (m2MAchR) were chosen as indicators of motoneuron function. Immunoblotting showed that the amounts of ChAT in the ipsilateral facial nucleus significantly decreased to below 20% from 3 to 14 days after transection. The decreased level of ChAT in injured motoneurons was ascertained by immunohistochemical study. However, at 4-5 weeks after transection the level of ChAT was restored to that of control side. The amounts of VAchT in the transected nucleus were observed to decrease to below 20% in the first 14 days after transection. The down-regulated levels of VAchT in injured motoneurons were confirmed by immunohistochemical results. The reduced VAchT levels returned to the control levels at 4-5 weeks following insult. The level of m2MAchR in the ipsilateral nucleus was recognized to decrease to below 10% starting on the 5th day after insult, and the low levels were sustained for 5 weeks. Nissl staining at 5 days and 12 days after insult revealed that facial motoneurons in the transected nucleus were almost all alive. Altogether, these results indicate that transected adult rat facial motoneurons are functionally depressed with down-regulated levels of ChAT, VAchT and m2MAchR during the first 14 days after insult, and during weeks 4-5 ChAT and VAchT levels are restored while the levels of m2MAchR remain low.


Assuntos
Regulação para Baixo , Nervo Facial/metabolismo , Neurônios Motores/metabolismo , Animais , Axotomia , Tronco Encefálico/metabolismo , Contagem de Células , Colina O-Acetiltransferase/metabolismo , Masculino , Ratos , Receptor Muscarínico M2/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...