Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 24(22): 5868-5875, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29411436

RESUMO

2-(1,3-Benzothiazol-2-yl)-4-methoxy-6-(1,4,5-triphenyl-1H-imidazol-2-yl)phenol (BTImP) is an excited-state intramolecular proton transfer (ESIPT) fluorophore, containing an acid-stimuli-responsive intramolecular hydrogen bond (H-bond) that can switch from the central phenolic proton to the imidazole (Im) or benzothiazole (BT) nitrogen atoms. Here, we demonstrate that BTImP shows full-color (red, green, blue, and white) emission upon the addition of different concentrations of HClO4 or, with time, after the addition of HBF4 . It also shows thermally dependent color changes from pink through white to blue in a narrow temperature range of 25-60 °C. 1 H and 15 N NMR measurements suggest that, after the green fluorescent BTImP is protonated at its Im nitrogen atom, a conjugate base anion coordinates to the imidazolium (HIm+ ) proton, forming two types of complexes with different coordination states. One state shows a significantly Stokes-shifted red emission resulting from ESIPT at the BT side, whereas the other shows a typical Stokes-shifted blue emission, probably caused by interaction of the anion with the phenolic proton, which breaks the H-bond on the BT side. BF4- and ClO4- are effective in forming such a blue emitter, whereas Cl- and PF6- are not; this behavior depends on whether the anion can fit into the bidentate binding site consisting of HIm+ and the phenolic hydroxy group.

2.
Chemistry ; 17(51): 14442-9, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22102443

RESUMO

The temperature-dependent dynamic properties of [Cu(II)(2)(ADCOO)(4)(DMF)(2)]⋅(DMF)(2) (1) and [Cu(II)(2)(ADCOO)(4)(AcOEt)(2)] (2) crystals were examined by X-ray crystallography, (1)H NMR spectroscopy, and measurements of the dielectric constants and magnetic susceptibilities (ADCOO = adamantane carboxylate, DMF = N,N-dimethylformamide, and AcOEt = ethyl acetate). In both crystals, four ADCOO groups bridged a binuclear Cu(II)-Cu(II) bond, forming a paddle-wheel [Cu(II)(2)(ADCOO)(4)] structure. The oxygen atoms of two DMF molecules in crystal 1 and two AcOEt molecules in crystal 2 were coordinated at axial positions of the [Cu(II)(2)(ADCOO)(4)] moiety, forming [Cu(II)(2)(ADCOO)(4)(DMF)(2)] and [Cu(II)(2)(ADCOO)(4)(AcOEt)(2)], respectively. Two additional DMF molecules were included in the unit cell of crystal 1, whereas AcOEt was not included in the unit cell of crystal 2. The structural analyses of crystal 1 at 300 K showed three-fold rotation of the adamantyl groups, whereas rotation of the adamantyl groups of crystal 2 at 300 K was not observed. Thermogravimetric measurements of crystal 1 indicated a gradual elimination of DMF upon increasing the temperature above 300 K. The dynamic behavior of the crystallized DMF yielded significant temperature-dependent dielectric responses in crystal 1, which showed a huge dielectric peak at 358 K in the heating process. In contrast, only small frequency-dependent dielectric responses were observed in crystal 2 because of the freezing of the molecular rotation of the adamantyl groups. The magnetic behavior was dominated by the strong antiferromagnetic coupling between the two S = 1/2 spins of the Cu(II)-Cu(II) site, with magnetic exchange energies (J) of -265 K (crystal 1) and -277 K (crystal 2).


Assuntos
Adamantano/química , Ácidos Carboxílicos/química , Cobre/química , Formamidas/química , Compostos Organometálicos/química , Cristalografia por Raios X , Dimetilformamida , Ligantes , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...