Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 175(3): 1135-1143, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28982780

RESUMO

The surface tension (γ) of xylem sap plays a key role in stabilizing air-water interfaces at the pits between water- and gas-filled conduits to avoid air seeding at low water potentials. We studied seasonal changes in xylem sap γ in Picea abies and Pinus mugo growing at the alpine timberline. We analyzed their vulnerability to drought-induced embolism using solutions of different γ and estimated the potential effect of seasonal changes in γ on hydraulic vulnerability. In both species, xylem sap γ showed distinct seasonal courses between about 50 and 68 mn m-1 Solutions with low γ caused higher vulnerability to drought-induced xylem embolism. The water potential at 50% loss of hydraulic conductivity in P. abies and P. mugo was -3.35 and -3.86 MPa at γ of 74 mn m-1 but -2.11 and -2.09 MPa at 45 mn m-1 This indicates up to about 1 MPa seasonal variation in 50% loss of hydraulic conductivity. The results revealed pronounced effects of changes in xylem sap γ on the hydraulic safety of trees in situ. These effects also are relevant in vulnerability analyses, where the use of standard solutions with high γ overestimates hydraulic safety. Thus, γ should be considered carefully in hydraulic studies.


Assuntos
Pinus/fisiologia , Exsudatos de Plantas/fisiologia , Água/fisiologia , Xilema/fisiologia , Secas , Concentração Osmolar , Perfusão , Estações do Ano , Soluções , Tensão Superficial
2.
New Phytol ; 205(3): 1128-1141, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25417785

RESUMO

Drought is considered to enhance susceptibility of Norway spruce (Picea abies) to infestations by the Eurasian spruce bark beetle (Ips typographus, Coleoptera: Curculionidae), although empirical evidence is scarce. We studied the impact of experimentally induced drought on tree water status and constitutive resin flow, and how physiological stress affects host acceptance and resistance. We established rain-out shelters to induce both severe (two full-cover plots) and moderate (two semi-cover plots) drought stress. In total, 18 sample trees, which were divided equally between the above treatment plots and two control plots, were investigated. Infestation was controlled experimentally using a novel 'attack box' method. Treatments influenced the ratios of successful and defended attacks, but predisposition of trees to infestation appeared to be mainly driven by variations in stress status of the individual trees over time. With increasingly negative twig water potentials and decreasing resin exudation, the defence capability of the spruce trees decreased. We provide empirical evidence that water-limiting conditions impair Norway spruce resistance to bark beetle attack. Yet, at the same time our data point to reduced host acceptance by I. typographus with more extreme drought stress, indicated by strongly negative pre-dawn twig water potentials.


Assuntos
Besouros/fisiologia , Picea/parasitologia , Casca de Planta/parasitologia , Doenças das Plantas/parasitologia , Água/metabolismo , Animais , Áustria , Clima , Suscetibilidade a Doenças , Secas , Modelos Lineares , Solo , Estresse Fisiológico , Árvores/parasitologia , Água/análise , Tempo (Meteorologia)
3.
Plant Physiol ; 143(1): 60-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17041033

RESUMO

Freeze-thaw events can cause embolism in plant xylem. According to classical theory, gas bubbles are formed during freezing and expand during thawing. Conifers have proved to be very resistant to freeze-thaw induced embolism, because bubbles in tracheids are small and redissolve during thawing. In contrast, increasing embolism rates upon consecutive freeze-thaw events were observed that cannot be explained by the classical mechanism. In this study, embolism formation during freeze-thaw events was analyzed via ultrasonic and Cryo-scanning electron microscope techniques. Twigs of Picea abies L. Karst. were subjected to up to 120 freeze-thaw cycles during which ultrasonic acoustic emissions, xylem temperature, and diameter variations were registered. In addition, the extent and cross-sectional pattern of embolism were analyzed with staining experiments and Cryo-scanning electron microscope observations. Embolism increased with the number of freeze-thaw events in twigs previously dehydrated to a water potential of -2.8 MPa. In these twigs, acoustic emissions were registered, while saturated twigs showed low, and totally dehydrated twigs showed no, acoustic activity. Acoustic emissions were detected only during the freezing process. This means that embolism was formed during freezing, which is in contradiction to the classical theory of freeze-thaw induced embolism. The clustered pattern of embolized tracheids in cross sections indicates that air spread from a dysfunctional tracheid to adjacent functional ones. We hypothesize that the low water potential of the growing ice front led to a decrease of the potential in nearby tracheids. This may result in freezing-induced air seeding.


Assuntos
Congelamento , Picea/fisiologia , Microscopia Crioeletrônica , Picea/anatomia & histologia , Picea/ultraestrutura , Ultrassom , Água/metabolismo , Madeira/fisiologia , Madeira/ultraestrutura
4.
J Exp Bot ; 54(390): 2149-55, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12867547

RESUMO

The cohesion-tension (CT) theory requires stability of liquid water in conducting elements under high tensions. This stability has been measured using different methods, some of which yielded contradictory results. In this study a method is presented to establish known tensions in the water inside conifer tracheids, to detect cavitation events under these conditions and to construct vulnerability curves. Tangential sapwood sections of Juniperus virginiana L. were placed closely over the surface of NaCl solutions with water potentials ranging from -0.91 to -7.57 MPa. Water potentials were measured with a thermocouple hygrometer in contact with the section, and ultrasound acoustic emissions (UAE) from the sections were registered with an ultrasound transducer. The emission rate of signals increased with the concentration of the solution. Exposure of 100 microm sections in the airspace over a solution provided optimal conditions for the rupture of the water column: many tracheid walls bordered on air, and water in the lumen came under high tension. Nevertheless, the water remained in the metastable liquid state for periods of many hours. The vulnerability obtained from simultaneous measurements of water potentials and ultrasound acoustic emissions on sapwood sections was substantially higher than from conventionally measured curves of detached branches. It is argued that the isolation of tracheids in a massive organ as well as the rate of potential decline will influence the probability of cavitations at a given water potential and thus the parameters of the vulnerability curve.


Assuntos
Juniperus/fisiologia , Água , Acústica , Modelos Biológicos , Potenciometria , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...