Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830382

RESUMO

Seborrheic keratosis, which is a benign tumor composed of epidermal keratinocytes, develops common in the elderly. Uric acid generated by upregulated guanine deaminase (GDA) has been identified to cause UV-induced keratinocyte senescence in seborrheic keratosis. Seborrheic keratosis is also frequently pigmented. Growing evidences indicate that hyperuricemia is a risk factor of acanthosis nigricans, an acquired skin hyperpigmentation. The objective of this study was to investigate role of GDA and its metabolic end product, uric acid, in hyperpigmentation of patients with seborrheic keratosis using their lesional and non-lesional skin specimen sets and cultured primary human epidermal keratinocytes with or without GDA overexpression or uric acid treatment. GDA-overexpressing keratinocytes or their conditioned media containing uric acid increased expression levels of MITF and tyrosinase in melanocytes. Uric acid released from keratinocytes was facilitated by ABCG2 transporter with the help of PDZK1 interaction. Released uric acid was taken by URAT1 transporter in melanocytes, stimulating melanogenesis through p38 MAPK activation. Overall, GDA upregulation in seborrheic keratosis plays a role in melanogenesis via its metabolic end product uric acid, suggesting that seborrheic keratosis as an example of hyperpigmentation associated with photoaging.


Assuntos
Guanina Desaminase/genética , Hiperpigmentação/genética , Ceratose Seborreica/genética , Ácido Úrico/metabolismo , Idoso , Células Cultivadas , Células Epidérmicas/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Hiperpigmentação/complicações , Hiperpigmentação/patologia , Queratinócitos/metabolismo , Ceratose Seborreica/complicações , Ceratose Seborreica/patologia , Masculino , Melanócitos/metabolismo , Pessoa de Meia-Idade , Pele/metabolismo
2.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033114

RESUMO

The skin is a multilayered and primary defensive organ. Intimate intercellular communication in the skin is necessary to ensure effective surveillance. Extracellular vesicles (EVs) are being explored for their involvement in intercellular skin communication. The aim of this study was to evaluate how human dermal fibroblasts (HDFs) accelerate EV production during senescence and the effects of senescence-associated EVs on epidermal homeostasis. Replicative senescent HDFs were assessed with senescence-associated ß-galactosidase staining and the expression of senescence-related markers. Isolated EVs were characterized by dynamic light scattering and EV marker expression. EVs secreted from untreated young or senescent HDFs, or from those treated with a nSMase inhibitor, antioxidant, and lysosomal activity regulators, were determined by sandwich ELISA for CD81. Human epidermal keratinocytes were treated with young- and senescent HDF-derived EVs. Compared to young HDFs, senescent HDFs produced relatively high levels of EVs due to the increased nSMase activity, oxidative stress, and altered lysosomal activity. The nSMase inhibitor, antioxidant, and agents that recovered lysosomal activity reduced EV secretion in senescent HDFs. Relative to young HDF-derived EVs, senescent HDF-derived EVs were less supportive in keratinocyte differentiation and barrier function but increased proinflammatory cytokine IL-6 levels. Our study suggests that dermis-derived EVs may regulate epidermal homeostasis by reflecting cellular status, which provides insight as to how the dermis communicates with the epidermis and influences skin senescence.


Assuntos
Diferenciação Celular/fisiologia , Senescência Celular/fisiologia , Derme/fisiologia , Vesículas Extracelulares/fisiologia , Fibroblastos/fisiologia , Queratinócitos/fisiologia , Adulto , Antioxidantes/metabolismo , Comunicação Celular/fisiologia , Células Cultivadas , Derme/metabolismo , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/fisiopatologia , Interleucina-6/metabolismo , Queratinócitos/metabolismo , Estresse Oxidativo/fisiologia
3.
Biochimie ; 158: 165-171, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30639360

RESUMO

The potent cytotoxicity of reactive oxygen species (ROS) can cause various diseases, however, it may also serve as a powerful chemotherapeutic strategy capable of killing cancer cells. Oxalomalate (OMA, α-hydroxy-ß-oxalosuccinic acid), a tricarboxylic acid intermediate, is a well-known competitive inhibitor of two classes of NADP+-dependent isocitrate dehydrogenase (IDH) isoenzymes, which serve as the major antioxidants and redox regulators in the mitochondria and cytosol. In this study, we investigated the therapeutic effects of OMA in melanoma and elucidated the associated underlying mechanisms of action using in vitro and in vivo models. OMA targeting IDH enzymes suppressed melanoma growth through activation of apoptosis and inhibition of angiogenesis. Mechanistically, our findings showed that OMA activated p53-mediated apoptosis through ROS-dependent ATM-Chk2 signaling and reduced the expression of vascular endothelial growth factor through ROS-dependent E2F1-mediated hypoxia inducible factor-1α degradation. In particular, OMA-induced suppression of IDH activity resulted in induction of ROS stress response, ultimately leading to apoptotic cell death and antiangiogenic effects in melanoma cells. Thus, OMA might be a potential candidate drug for melanoma skin cancer therapy.


Assuntos
Inibidores da Angiogênese/farmacologia , Apoptose/efeitos dos fármacos , Melanoma/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Oxalatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Quinase do Ponto de Checagem 2/metabolismo , Isocitrato Desidrogenase/metabolismo , Masculino , Melanoma/irrigação sanguínea , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Proteína Supressora de Tumor p53/metabolismo
4.
Antioxid Redox Signal ; 30(14): 1731-1745, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30191719

RESUMO

AIMS: Peroxiredoxin5 (Prdx5), a thioredoxin peroxidase, is an antioxidant enzyme that is widely studied for its antioxidant properties and protective roles in neurological and cardiovascular disorders. This study is aimed at investigating the functional significance of Prdx5 in mitochondria and at analyzing its roles in ciliogenesis during the process of vertebrate development. RESULTS: We found that several Prdx genes were strongly expressed in multiciliated cells in developing Xenopus embryos, and their peroxidatic functions were crucial for normal cilia development. Depletion of Prdx5 increased levels of cellular reactive oxygen species (ROS), consequently leading to mitochondrial dysfunction and abnormal cilia formation. Proteomic and transcriptomic approaches revealed that excessive ROS accumulation on Prdx5 depletion subsequently reduced the expression level of pyruvate kinase (PK), a key metabolic enzyme in energy production. We further confirmed that the promotor activity of PK was significantly reduced on Prdx5 depletion and that the reduction in PK expression and its promoter activity led to ciliary defects observed in Prdx5-depleted cells. INNOVATION: Our data revealed the novel relationship between ROS and Prdx5 and the consequent effects of this interaction on vertebrate ciliogenesis. The normal process of ciliogenesis is interrupted by the Prdx5 depletion, resulting in excessive ROS levels and suggesting cilia as vulnerable targets of ROS. CONCLUSION: Prdx5 plays protective roles in mitochondria and is critical for normal cilia development by regulating the levels of ROS. The loss of Prdx5 is associated with excessive production of ROS, resulting in mitochondrial dysfunction and aberrant ciliogenesis.


Assuntos
Cílios/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Peroxirredoxinas/genética , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular , Cílios/metabolismo , Cílios/ultraestrutura , Imunofluorescência , Expressão Gênica , Humanos , Mitocôndrias/ultraestrutura , Especificidade de Órgãos , Estresse Oxidativo , Peroxirredoxinas/metabolismo , Fenótipo , Interferência de RNA , RNA Interferente Pequeno/genética , Vertebrados
5.
J Invest Dermatol ; 138(12): 2522-2530, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29959907

RESUMO

Mitochondrial dysfunction can drive cellular senescence, which is accompanied by changes in metabolism and increases in senescence-associated secretory phenotypes. Although pyruvate, a key metabolite for numerous aspects of metabolism, has been used as general supplement in synthetic media, the physiological function of pyruvate underlying its protective role against cellular senescence under normal conditions has remained unknown. Here, we show that extracellular pyruvate prevents senescence in normal human dermal fibroblasts through increasing the generation of oxidized nicotinamide adenine dinucleotide (NAD+) during the conversion to lactate. Acetylated peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), vacuolar-type H+-ATPaseV0A1 (v-ATPaseV0A1), NF-κB p65 subunit (RelA), and histone H3 accumulate under pyruvate deprivation conditions, resulting in the onset of senescence in normal human dermal fibroblasts through the accumulation of abnormal mitochondria generated by lysosomal inactivation-induced mitophagy defects, and through an increase in senescence-associated secretory phenotypes. Furthermore, pyruvate showed a protective effect against aging phenotypes in skin equivalents, which consist of a dermis and epidermis that act similarly to in vivo skin tissues. Our findings reveal a connection between pyruvate and mitochondrial dysfunction in the progression of senescence that is, to our knowledge, previously unreported. These results suggest that the pyruvate deprivation-induced senescence model can be used to study the connection between metabolism and senescence under normal conditions.


Assuntos
Senescência Celular , Derme/patologia , Epiderme/patologia , Fibroblastos/fisiologia , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Ácido Pirúvico/metabolismo , Células Cultivadas , Derme/metabolismo , Epiderme/metabolismo , Histonas/metabolismo , Humanos , Ligases/metabolismo , Mitocôndrias/patologia , Mitofagia , NAD/metabolismo , PPAR gama/metabolismo
6.
Annu Rev Biochem ; 86: 749-775, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28226215

RESUMO

Peroxiredoxins (Prxs) constitute a major family of peroxidases, with mammalian cells expressing six Prx isoforms (PrxI to PrxVI). Cells produce hydrogen peroxide (H2O2) at various intracellular locations where it can serve as a signaling molecule. Given that Prxs are abundant and possess a structure that renders the cysteine (Cys) residue at the active site highly sensitive to oxidation by H2O2, the signaling function of this oxidant requires extensive and highly localized regulation. Recent findings on the reversible regulation of PrxI through phosphorylation at the centrosome and on the hyperoxidation of the Cys at the active site of PrxIII in mitochondria are described in this review as examples of such local regulation of H2O2 signaling. Moreover, their high affinity for and sensitivity to oxidation by H2O2 confer on Prxs the ability to serve as sensors and transducers of H2O2 signaling through transfer of their oxidation state to bound effector proteins.


Assuntos
Ritmo Circadiano/genética , Regulação da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Peroxirredoxinas/metabolismo , Animais , Domínio Catalítico , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocôndrias/ultraestrutura , Mitose , Oxirredução , Peroxirredoxinas/genética , Fosforilação , Transdução de Sinais
7.
Free Radic Biol Med ; 99: 120-127, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27497909

RESUMO

Mitochondria produce hydrogen peroxide (H2O2) during energy metabolism in most mammalian cells as well as during the oxidation of cholesterol associated with the synthesis of steroid hormones in steroidogenic cells. Some of the H2O2 produced in mitochondria is released into the cytosol, where it serves as a key regulator of various signaling pathways. Given that mitochondria are equipped with several H2O2-eliminating enzymes, however, it had not been clear how mitochondrial H2O2 can escape destruction by these enzymes for such release. Peroxiredoxin III (PrxIII) is the most abundant and efficient H2O2-eliminating enzyme in mitochondria of most cell types. We found that PrxIII undergoes reversible inactivation through hyperoxidation of its catalytic cysteine residue to cysteine sulfinic acid, and that release of mitochondrial H2O2 likely occurs as a result of such PrxIII inactivation. The hyperoxidized form of PrxIII (PrxIII-SO2H) is reduced and reactivated by sulfiredoxin (Srx). We also found that the amounts of PrxIII-SO2H and Srx undergo antiphasic circadian oscillation in mitochondria of the adrenal gland, heart, and brown adipose tissue of mice maintained under normal conditions. Cytosolic Srx was found to be imported into mitochondria via a mechanism that requires formation of a disulfide-linked complex with heat shock protein 90, which is likely promoted by H2O2 released from mitochondria. The imported Srx was found to be degraded by Lon protease in a manner dependent on PrxIII hyperoxidation state. The coordinated import and degradation of Srx underlie Srx oscillation and consequent PrxIII-SO2H oscillation in mitochondria. The rhythmic change in the amount of PrxIII-SO2H suggests that mitochondrial release of H2O2 is also likely a circadian event that conveys temporal information on steroidogenesis in the adrenal gland and on energy metabolism in heart and brown adipose tissue to cytosolic signaling pathways.

8.
Free Radic Biol Med ; 100: 73-80, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-28236420

RESUMO

Mitochondria produce hydrogen peroxide (H2O2) during energy metabolism in most mammalian cells as well as during the oxidation of cholesterol associated with the synthesis of steroid hormones in steroidogenic cells. Some of the H2O2 produced in mitochondria is released into the cytosol, where it serves as a key regulator of various signaling pathways. Given that mitochondria are equipped with several H2O2-eliminating enzymes, however, it had not been clear how mitochondrial H2O2 can escape destruction by these enzymes for such release. Peroxiredoxin III (PrxIII) is the most abundant and efficient H2O2-eliminating enzyme in mitochondria of most cell types. We found that PrxIII undergoes reversible inactivation through hyperoxidation of its catalytic cysteine residue to cysteine sulfinic acid, and that release of mitochondrial H2O2 likely occurs as a result of such PrxIII inactivation. The hyperoxidized form of PrxIII (PrxIII-SO2H) is reduced and reactivated by sulfiredoxin (Srx). We also found that the amounts of PrxIII-SO2H and Srx undergo antiphasic circadian oscillation in mitochondria of the adrenal gland, heart, and brown adipose tissue of mice maintained under normal conditions. Cytosolic Srx was found to be imported into mitochondria via a mechanism that requires formation of a disulfide-linked complex with heat shock protein 90, which is likely promoted by H2O2 released from mitochondria. The imported Srx was found to be degraded by Lon protease in a manner dependent on PrxIII hyperoxidation state. The coordinated import and degradation of Srx underlie Srx oscillation and consequent PrxIII-SO2H oscillation in mitochondria. The rhythmic change in the amount of PrxIII-SO2H suggests that mitochondrial release of H2O2 is also likely a circadian event that conveys temporal information on steroidogenesis in the adrenal gland and on energy metabolism in heart and brown adipose tissue to cytosolic signaling pathways.


Assuntos
Ritmo Circadiano , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peroxirredoxina III/metabolismo , Transdução de Sinais , Animais , Humanos , Camundongos , Mitocôndrias/fisiologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/fisiologia , Peroxirredoxina III/fisiologia
9.
Mol Cell ; 59(4): 651-63, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26236015

RESUMO

Hydrogen peroxide (H2O2) released from mitochondria regulates various cell signaling pathways. Given that H2O2-eliminating enzymes such as peroxiredoxin III (PrxIII) are abundant in mitochondria, however, it has remained unknown how such release can occur. Active PrxIII-SH undergoes reversible inactivation via hyperoxidation to PrxIII-SO2, which is then reduced by sulfiredoxin. We now show that the amounts of PrxIII-SO2 and sulfiredoxin undergo antiphasic circadian oscillation in the mitochondria of specific tissues of mice maintained under normal conditions. Cytosolic sulfiredoxin was found to be imported into the mitochondria via a mechanism that requires formation of a disulfide-linked complex with heat shock protein 90, which is promoted by H2O2 released from mitochondria. The imported sulfiredoxin is degraded by Lon in a manner dependent on PrxIII hyperoxidation state. The coordinated import and degradation of sulfiredoxin provide the basis for sulfiredoxin oscillation and consequent PrxIII-SO2 oscillation in mitochondria and likely result in an oscillatory H2O2 release.


Assuntos
Ritmo Circadiano , Mitocôndrias/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Animais , Células HeLa , Proteínas de Choque Térmico/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos , Oxirredução , Peroxirredoxina III/metabolismo , Protease La/metabolismo , Transporte Proteico , Proteólise , Dióxido de Enxofre/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
10.
Redox Rep ; 20(5): 228-33, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26018922

RESUMO

OBJECTIVES: Leukocyte NADPH oxidase, which is active in neutrophils, is a membrane-bound enzyme that catalyzes the reduction of oxygen to O2(-) by using NADPH as an electron donor. Previously, we reported that casein kinase 2 (CK2), a ubiquitous and highly conserved Ser/Thr kinase, is responsible for p47(phox) phosphorylation and that phosphorylation of p47(phox) by CK2 regulates the deactivation of NADPH oxidase. METHODS: Here, we report that the residue Cys(196) of p47(phox) is a target of S-nitrosylation by S-nitrosothiol and peroxynitrite and that this modification enhanced phosphorylation of p47(phox) by CK2. RESULTS: S-Nitrosylated p47(phox) enhanced CK2 b subunit binding, presumably due to alterations in protein conformation. DISCUSSION: Taken together, we propose that S-nitrosylation of p47(phox) regulates the deactivation of NADPH oxidase via enhancement of p47(phox) phosphorylation by CK2.


Assuntos
Caseína Quinase II/química , Caseína Quinase II/metabolismo , Caseína Quinase II/genética , Humanos , NADPH Oxidases/química , NADPH Oxidases/metabolismo , Fosforilação , Conformação Proteica , S-Nitrosotióis/metabolismo
11.
Methods Enzymol ; 527: 169-81, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23830631

RESUMO

Members of the peroxiredoxin (Prx) family of antioxidant enzymes are inactivated via hyperoxidation of the active site cysteine by the substrate H2O2 and are reactivated via an ATP-consuming process catalyzed by sulfiredoxin (Srx). PrxIII is reversibly inactivated by H2O2 produced by cytochrome P450 11B1 (CYP11B1) in mitochondria during corticosterone synthesis in the adrenal gland of mice injected with adrenocorticotropic hormone (ACTH). Inactivation of PrxIII triggers a sequence of events including accumulation of H2O2, activation of p38 mitogen-activated kinase (MAPK), inhibition of cholesterol transfer, and suppression of corticosterone synthesis. Srx expression is significantly induced by ACTH injection. The coupling of CYP11B1 activity to PrxIII inactivation and Srx induction provides a feedback regulatory mechanism for steroidogenesis that functions independently of the hypothalamic-pituitary-adrenal axis. Furthermore, the PrxIII-Srx regulatory pathway is critical for the circadian rhythm of corticosterone production. Although adrenocortical tumor cell lines such as Y-1 and H295R have been used extensively for studying the mechanism of steroidogenesis, those clonal cells were found to be unsuitable as an in vitro model for redox signaling because the amount of Srx in the cell lines is much higher than that in mouse adrenal gland and not affected by ACTH stimulation. Furthermore, the levels of PrxIII in the clonal cells are greatly reduced compared to that in the adrenal gland, and ACTH does not induce PrxIII hyperoxidation in the clonal cells. Primary adrenocortical cells isolated from the mouse adrenal gland were also found to be an invalid model because Srx levels are increased, along with decreased levels of hyperoxidized PrxIII, soon after isolation of these cells. Organ culture system is, however, appropriate for studying the PrxIII-Srx regulatory function as the levels of hyperoxidized PrxIII and Srx in the adrenal glands maintained overnight in culture medium are not changed.


Assuntos
Córtex Suprarrenal/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peroxirredoxina III/metabolismo , Córtex Suprarrenal/citologia , Hormônio Adrenocorticotrópico/fisiologia , Animais , Células Cultivadas , Corticosterona/biossíntese , Indução Enzimática , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Transgênicos , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Cultura Primária de Células , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Técnicas de Cultura de Tecidos
12.
Biochem Biophys Res Commun ; 425(4): 892-6, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22902632

RESUMO

Phagocyte NADPH oxidase catalyzes the reduction of molecular oxygen to superoxide and is essential for defense against microbes. Rac2 is a low molecular weight GTP-binding protein that has been implicated in the regulation of phagocyte NADPH oxidase. Here we report that Cys(157) of Rac2 is a target of S-glutathionylation and that this modification is reversed by dithiothreitol as well as enzymatically by thioltransferase in the presence of GSH. S-glutathionylated Rac2 enhanced the binding of GTP, presumably due to structural alterations. These results elucidate the redox regulation of cysteine in Rac2 and a possible mechanism for regulating NADPH oxidase activation.


Assuntos
Cisteína/metabolismo , Glutationa/metabolismo , Guanosina Trifosfato/metabolismo , NADP/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Cisteína/química , Cisteína/genética , Ditiotreitol/química , Ativação Enzimática , Glutationa/química , Guanosina Trifosfato/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas rac de Ligação ao GTP/química , Proteínas rac de Ligação ao GTP/genética , Proteína RAC2 de Ligação ao GTP
13.
Mol Cell ; 46(5): 584-94, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22681886

RESUMO

Certain members of the peroxiredoxin (Prx) family undergo inactivation through hyperoxidation of the catalytic cysteine to sulfinic acid during catalysis and are reactivated by sulfiredoxin; however, the physiological significance of this reversible regulatory process is unclear. We now show that PrxIII in mouse adrenal cortex is inactivated by H(2)O(2) produced by cytochrome P450 enzymes during corticosterone production stimulated by adrenocorticotropic hormone. Inactivation of PrxIII triggers a sequence of events including accumulation of H(2)O(2), activation of p38 mitogen-activated protein kinase, suppression of steroidogenic acute regulatory protein synthesis, and inhibition of steroidogenesis. Interestingly, levels of inactivated PrxIII, activated p38, and sulfiredoxin display circadian oscillations. Steroidogenic tissue-specific ablation of sulfiredoxin in mice resulted in the persistent accumulation of inactive PrxIII and suppression of the adrenal circadian rhythm of corticosterone production. The coupling of CYP11B1 activity to PrxIII inactivation provides a feedback regulatory mechanism for steroidogenesis that functions independently of the hypothalamic-pituitary-adrenal axis.


Assuntos
Glândulas Suprarrenais/metabolismo , Retroalimentação Fisiológica , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Peroxirredoxina III/metabolismo , Animais , Colesterol/metabolismo , Corticosterona/biossíntese , Camundongos , Camundongos Transgênicos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peroxirredoxina III/fisiologia , Fosfoproteínas/metabolismo , Fosforilação , Esteroide 11-beta-Hidroxilase/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Antioxid Redox Signal ; 17(10): 1351-61, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22490042

RESUMO

AIMS: To define the mechanisms underlying pyrazole-induced oxidative stress and the protective role of peroxiredoxins (Prxs) and sulfiredoxin (Srx) against such stress. RESULTS: Pyrazole increased Srx expression in the liver of mice in a nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent manner and induced Srx translocation from the cytosol to the endoplasmic reticulum (ER) and mitochondria. Pyrazole also induced the expression of CYP2E1, a primary reactive oxygen species (ROS) source for ethanol-induced liver injury, in ER and mitochondria. However, increased CYP2E1 levels only partially accounted for the pyrazole-mediated induction of Srx, prompting the investigation of CYP2E1-independent ROS generation downstream of pyrazole. Indeed, pyrazole increased ER stress, which is known to elevate mitochondrial ROS. In addition, pyrazole up-regulated CYP2E1 to a greater extent in mitochondria than in ER. Accordingly, among Prxs I to IV, PrxIII, which is localized to mitochondria, was preferentially hyperoxidized in the liver of pyrazole-treated mice. Pyrazole-induced oxidative damage to the liver was greater in PrxIII(-/-) mice than in wild-type mice. Such damage was also increased in Srx(-/-) mice treated with pyrazole, underscoring the role of Srx as the guardian of PrxIII. INNOVATION: The roles of Prxs, Srx, and ER stress have not been previously studied in relation to pyrazole toxicity. CONCLUSION: The concerted action of PrxIII and Srx is important for protection against pyrazole-induced oxidative stress arising from the convergent induction of CYP2E1-derived and ER stress-derived ROS in mitochondria.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peroxirredoxina III/metabolismo , Pirazóis/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Peroxirredoxina III/genética
15.
J Biol Chem ; 287(7): 4403-10, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22147704

RESUMO

Peroxiredoxins (Prxs) contain an active site cysteine that is sensitive to oxidation by H(2)O(2). Mammalian cells express six Prx isoforms that are localized to various cellular compartments. The oxidized active site cysteine of Prx can be reduced by a cellular thiol, thus enabling Prx to function as a locally constrained peroxidase. Regulation of Prx via phosphorylation in response to extracellular signals allows the local accumulation of H(2)O(2) and thereby enables its messenger function. The fact that the oxidation state of the active site cysteine of Prx can be transferred to other proteins that are less intrinsically susceptible to H(2)O(2) also allows Prx to function as an H(2)O(2) sensor.


Assuntos
Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidase/metabolismo , Peroxirredoxinas/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Animais , Domínio Catalítico/fisiologia , Humanos , Isoenzimas/metabolismo , Oxirredução , Fosforilação/fisiologia
16.
Biochimie ; 93(10): 1808-15, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21741430

RESUMO

(-)-Epigallocatechin-3-gallate (EGCG), a well-known chemopreventive factor, induces cancer cells undergoing apoptosis. Over the last several years, we have shown that the mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDPm) functions as an antioxidant and anti-apoptotic protein by supplying NADPH to antioxidant systems. Here, we show that EGCG induced the inactivation of IDPm as a purified enzyme and in cultured cancer cells in a dose- and time-dependent manner. Loss of enzyme activity was associated with the depletion of the thiol groups in protein. In addition, transfection of HeLa cells with an IDPm small interfering RNA (siRNA) markedly attenuated the activity of IDPm and substantially enhanced EGCG-induced apoptosis as indicated by the morphological evidence of apoptosis, DNA fragmentation, and the modulation of mitochondrial function and apoptotic marker proteins. Taken together, our results suggest that the suppression of IDPm activity resulted in the disruption of cellular redox balance and subsequently exacerbates EGCG-induced apoptotic cell death in HeLa cells. These results might have implications for developing an effective combination modality in cancer treatment.


Assuntos
Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Isocitrato Desidrogenase/metabolismo , Mitocôndrias/enzimologia , Apoptose/genética , Catequina/farmacologia , Linhagem Celular Tumoral , Fragmentação do DNA/efeitos dos fármacos , Células HCT116 , Células HeLa , Humanos , Immunoblotting , Isocitrato Desidrogenase/genética , Mutagênese Sítio-Dirigida , RNA Interferente Pequeno
17.
Hepatology ; 53(3): 945-53, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21319188

RESUMO

UNLABELLED: Peroxiredoxins (Prxs) are peroxidases that catalyze the reduction of reactive oxygen species (ROS). The active site cysteine residue of members of the 2-Cys Prx subgroup (Prx I to IV) of Prxs is hyperoxidized to cysteine sulfinic acid (Cys-SO(2) ) during catalysis with concomitant loss of peroxidase activity. Reactivation of the hyperoxidized Prx is catalyzed by sulfiredoxin (Srx). Ethanol consumption induces the accumulation of cytochrome P450 2E1 (CYP2E1), a major contributor to ethanol-induced ROS production in the liver. We now show that chronic ethanol feeding markedly increased the expression of Srx in the liver of mice in a largely Nrf2-dependent manner. Among Prx I to IV, only Prx I was found to be hyperoxidized in the liver of ethanol-fed wildtype mice, and the level of Prx I-SO(2) increased to ≈30% to 50% of total Prx I in the liver of ethanol-fed Srx(-/-) mice. This result suggests that Prx I is the most active 2-Cys Prx in elimination of ROS from the liver of ethanol-fed mice and that, despite the up-regulation of Srx expression by ethanol, the capacity of Srx is not sufficient to counteract the hyperoxidation of Prx I that occurs during ROS reduction. A protease protection assay revealed that a large fraction of Prx I is located together with CYP2E1 at the cytosolic side of the endoplasmic reticulum membrane. The selective role of Prx I in ROS removal is thus likely attributable to the proximity of Prx I and CYP2E1. CONCLUSION: The pivotal functions of Srx and Prx I in protection of the liver in ethanol-fed mice was evident from the severe oxidative damage observed in mice lacking either Srx or Prx I.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Etanol/toxicidade , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peroxirredoxinas/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Masculino , Camundongos , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/deficiência , Peroxirredoxina III , Espécies Reativas de Oxigênio/metabolismo
18.
Free Radic Res ; 44(3): 332-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20088709

RESUMO

Selenium has been shown to play a chemopreventive role in human cancer, presumably by inducing tumour cell apoptosis. Selenite is thought to induce oxidative stress by the generation of the superoxide anion and catalysing the oxidation of thiol groups. It has previously been reported that control of the mitochondrial redox balance is a primary function of mitochondrial NADP(+)-dependent isocitrate dehydrogenase (IDPm) by supplying NADPH for antioxidant systems. When investigating whether IDPm would be a vulnerable target of selenite, the loss of enzyme activity was observed. Transfection of HeLa cells with an IDPm small interfering RNA (siRNA) markedly decreased activity of IDPm and enhanced cells' susceptibility of selenite-induced apoptosis, as indicated by morphological evidence of apoptosis, DNA fragmentation and the modulation of mitochondrial function and apoptotic marker proteins. These results suggest that IDPm siRNA sensitizes HeLa cells to selenite-induced apoptotic cell death, presumably through the perturbation of the cellular redox status.


Assuntos
Antineoplásicos/farmacologia , Apoptose/genética , DNA Mitocondrial/genética , Isocitrato Desidrogenase/genética , Selenito de Sódio/farmacologia , Apoptose/efeitos dos fármacos , Separação Celular , Fragmentação do DNA , DNA Mitocondrial/efeitos dos fármacos , Citometria de Fluxo , Inativação Gênica , Células HeLa , Humanos , Immunoblotting , Isocitrato Desidrogenase/efeitos dos fármacos , RNA Interferente Pequeno
19.
Biochem Pharmacol ; 79(7): 1072-80, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19944673

RESUMO

Cadmium ions have a high affinity for thiol groups. Therefore, they may disturb many cellular functions. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme to supply NADPH, a major source of reducing equivalents to the cytosol. Cadmium decreased the activity of IDPc both as a purified enzyme and in cultured cells. In the present study, we demonstrate that the knockdown of IDPc expression in HEK293 cells greatly enhances apoptosis induced by cadmium. Transfection of HEK293 cells with an IDPc small interfering RNA significantly decreased the activity of IDPc and enhanced cellular susceptibility to cadmium-induced apoptosis as indicated by the morphological evidence of apoptosis, DNA fragmentation and condensation, cellular redox status, mitochondria redox status and function, and the modulation of apoptotic marker proteins. Taken together, our results suggest that suppressing the expression of IDPc enhances cadmium-induced apoptosis of HEK293 cells by increasing disruption of the cellular redox status.


Assuntos
Apoptose/efeitos dos fármacos , Cádmio/farmacologia , Citosol/enzimologia , Isocitrato Desidrogenase/fisiologia , NADP/metabolismo , Caspase 3/fisiologia , Células Cultivadas , Humanos , Isocitrato Desidrogenase/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Oxirredução , RNA Interferente Pequeno/genética
20.
Free Radic Res ; 43(4): 409-16, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19291592

RESUMO

Cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) is susceptible to inactivation by numerous thiol-modifying reagents. This study now reports that Cys269 of IDPc is a target for S-glutathionylation and that this modification is reversed by dithiothreitol as well as enzymatically by cytosolic glutaredoxin in the presence of GSH. Glutathionylated IDPc was significantly less susceptible than native protein to peptide fragmentation by reactive oxygen species and proteolytic digestion. Glutathionylation may play a protective role in the degradation of protein through the structural alterations of IDPc. HEK293 cells treated with diamide displayed decreased IDPc activity and accumulated glutathionylated enzyme. Using immunoprecipitation with an anti-IDPc IgG and immunoblotting with an anti-GSH IgG, we purified and positively identified glutathionylated IDPc from the kidneys of mice subjected to ischemia/reperfusion injury and from the livers of ethanol-administered rats. These results suggest that IDPc activity is modulated through enzymatic glutathionylation and deglutathionylation during oxidative stress.


Assuntos
Glutationa/metabolismo , Isocitrato Desidrogenase/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Citosol/enzimologia , Primers do DNA/genética , Ditiotreitol/farmacologia , Etanol/toxicidade , Glutarredoxinas/metabolismo , Glutationa/química , Humanos , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Rim/enzimologia , Rim/lesões , Fígado/efeitos dos fármacos , Fígado/enzimologia , Camundongos , Mutagênese Sítio-Dirigida , Oxirredução , Estresse Oxidativo , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Traumatismo por Reperfusão/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...