Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20263, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985674

RESUMO

Despite SARS-CoV-2 vaccines eliciting systemic neutralising antibodies (nAbs), breakthrough infections still regularly occur. Infection helps to generate mucosal immunity, possibly reducing disease transmission. Monitoring mucosal nAbs is predominantly restricted to lab-based assays, which have limited application to the public. In this multi-site study, we used lateral-flow surrogate neutralisation tests to measure mucosal and systemic nAbs in vaccinated and breakthrough infected individuals in Australia and Singapore. Using three lateral flow assays to detect SARS-CoV-2 nAbs, we demonstrated that nasal mucosal nAbs were present in 71.4 (95% CI 56.3-82.9%) to 85.7% (95% CI 71.8-93.7%) of individuals with breakthrough infection (positivity rate was dependent upon the type of test), whereas only 20.7 (95% CI 17.1-49.4%) to 34.5% (95% CI 19.8-52.7%) of vaccinated individuals without breakthrough infection had detectible nasal mucosal nAbs. Of the individuals with breakthrough infection, collective mucosal anti-S antibody detection in confirmatory assays was 92.9% (95% CI 80.3-98.2%) of samples, while 72.4% (95% CI 54.1-85.5%) of the vaccinated individuals who had not experienced a breakthrough infection were positive to anti-S antibody. All breakthrough infected individuals produced systemic anti-N antibodies; however, these antibodies were not detected in the nasal cavity. Mucosal immunity is likely to play a role in limiting the transmission of SARS-CoV-2 and lateral flow neutralisation tests provide a rapid readout of mucosal nAbs at the point-of-care.


Assuntos
COVID-19 , Vacinas , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/prevenção & controle , Testes Imediatos , Mucosa Nasal , Anticorpos Antivirais , Infecções Irruptivas , Anticorpos Neutralizantes
2.
Mol Cell Proteomics ; 6(8): 1392-405, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17496250

RESUMO

Mass spectrometry is often used to determine post-translational modifications by analysis of tryptic digests of proteins. Here we demonstrate that the analysis of tryptic peptides together with analysis of the full-length protein provided optimal characterization of insulin-like growth factor-binding protein-5 (IGFBP-5) phosphorylation and glycosylation. IGFBP-5 binds insulin-like growth factors with high affinity and has important roles in cell survival, differentiation, and apoptosis. Until now, the primary structure of IGFBP-5 has been incompletely defined. We analyzed human IGFBP-5 from T47D cells by mass spectrometry to determine all of the in vivo post-translational modifications. In full-length IGFBP-5, 31% of the protein was unmodified, 37% was monophosphorylated, and 4% was diphosphorylated with no other modification. The remaining 27% was glycosylated, more than half of which was also monophosphorylated. The major phosphorylation site was Ser(96) in the central domain, and a minor phosphorylation site was Ser(248) near the C terminus. Neither site was phosphorylated in vitro by casein kinase 2, ruling it out as the in vivo kinase. An in vivo phosphorylation site was also found in IGFBP-2 at an analogous position, Ser(106). IGFBP-5 was heterogeneously O-glycosylated mainly by sialylated core 1 type glycans. The most abundant structure contained N-acetylhexosamine, hexose, and two N-acetylneuraminic acid carbohydrates. A small amount of sialylated core 2 type glycan was also present. Phosphorylation and O-glycosylation both affected IGFBP-5 binding to heparin but not insulin-like growth factor binding or ternary complex formation with the acid-labile subunit. The results reveal the first description of the in vivo phosphorylation of IGFBP-5 and its glycan composition.


Assuntos
Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Glicosilação , Heparina/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Dados de Sequência Molecular , Fosforilação , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...