Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(7): e0271453, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35905095

RESUMO

Selenoproteins contain the 21st amino acid, selenocysteine (Sec), which is incorporated at select UGA codons when a specialized hairpin sequence, the Sec insertion sequence (SECIS) element, is present in the 3' UTR. Aside from the SECIS, selenoprotein mRNA 3' UTRs are not conserved between different selenoproteins within a species. In contrast, the 3'-UTR of a given selenoprotein is often conserved across species, which supports the hypothesis that cis-acting elements in the 3'-UTR other than the SECIS exert post-transcriptional control on selenoprotein expression. In order to determine the function of one such SECIS context, we chose to focus on the plasma selenoprotein, SELENOP, which is required to maintain selenium homeostasis as a selenium transport protein that contains 10 Sec residues. It is unique in that its mRNA contains two SECIS elements in the context of a highly conserved 843-nucleotide 3' UTR. Here we have used RNA affinity chromatography and identified PTBP1 as the major RNA binding protein that specifically interacts with the sequence between the two SECIS elements. We then used CRISPR/Cas9 genome editing to delete two regions surrounding the first SECIS element. We found that these sequences are involved in regulating SELENOP mRNA and protein levels, which are inversely altered as a function of selenium concentrations.


Assuntos
Selênio , Selenocisteína , Regiões 3' não Traduzidas/genética , Sequência de Bases , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Selênio/metabolismo , Selenocisteína/genética , Selenoproteína P/genética , Selenoproteína P/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo
2.
Life Sci Alliance ; 5(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35210313

RESUMO

The dietary requirement for selenium is based on its incorporation into selenoproteins, which contain the amino acid selenocysteine (Sec). The Sec insertion sequence (SECIS) is an RNA structure found in the 3' UTR of all selenoprotein mRNAs, and it is required to convert in-frame UGA codons from termination to Sec-incorporating codons. SECIS-binding protein 2 (Sbp2) is required for Sec incorporation, but its paralogue, SECIS-binding protein 2-like (Secisbp2l), while conserved, has no known function. Here we determined the relative roles of Sbp2 and Secisbp2l by introducing CRISPR mutations in both genes in zebrafish. By monitoring selenoprotein synthesis with 75Se labeling during embryogenesis, we found that sbp2 -/- embryos still make a select subset of selenoproteins but secisbp2l -/- embryos retain the full complement. Abrogation of both genes completely prevents selenoprotein synthesis and juveniles die at 14 days post fertilization. Embryos lacking Sbp2 are sensitive to oxidative stress and express the stress marker Vtg1. We propose a model where Secisbp2l is required to promote essential selenoprotein synthesis when Sbp2 activity is compromised.


Assuntos
Proteínas de Ligação a RNA , Peixe-Zebra , Regiões 3' não Traduzidas , Animais , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...