Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(10): e1010913, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37796765

RESUMO

The genetic code is one of the most highly conserved features across life. Only a few lineages have deviated from the "universal" genetic code. Amongst the few variants of the genetic code reported to date, the codons UAA and UAG virtually always have the same translation, suggesting that their evolution is coupled. Here, we report the genome and transcriptome sequencing of a novel uncultured ciliate, belonging to the Oligohymenophorea class, where the translation of the UAA and UAG stop codons have changed to specify different amino acids. Genomic and transcriptomic analyses revealed that UAA has been reassigned to encode lysine, while UAG has been reassigned to encode glutamic acid. We identified multiple suppressor tRNA genes with anticodons complementary to the reassigned codons. We show that the retained UGA stop codon is enriched in the 3'UTR immediately downstream of the coding region of genes, suggesting that there is functional drive to maintain tandem stop codons. Using a phylogenomics approach, we reconstructed the ciliate phylogeny and mapped genetic code changes, highlighting the remarkable number of independent genetic code changes within the Ciliophora group of protists. According to our knowledge, this is the first report of a genetic code variant where UAA and UAG encode different amino acids.


Assuntos
Aminoácidos , Cilióforos , Aminoácidos/genética , Sequência de Aminoácidos , Código Genético , Cilióforos/genética , Códon de Terminação
2.
Wellcome Open Res ; 8: 520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38808318

RESUMO

We present a genome assembly from cultured Pycnococcus provasolii (a marine green alga; Chlorophyta; None; Pseudoscourfieldiales; Pycnococcaceae). The genome sequence is 32.2 megabases in span. Most of the assembly is scaffolded into 44 chromosomal pseudomolecules (99.67%). The mitochondrial and plastid genomes have also been assembled, and the length of the mitochondrial scaffold is 24.3 kilobases and of the plastid genome has been assembled and is 80.2 kilobases in length.

3.
Open Biol ; 12(8): 220126, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36000319

RESUMO

Spliced-leader trans-splicing (SLTS) has been described in distantly related eukaryotes and acts to mark mRNAs with a short 5' exon, giving different mRNAs identical 5' sequence-signatures. The function of these systems is obscure. Perkinsozoa encompasses a diversity of parasitic protists that infect bivalves, toxic-tide dinoflagellates, fish and frog tadpoles. Here, we report considerable sequence variation in the SLTS-system across the Perkinsozoa and find that multiple variant SLTS-systems are encoded in parallel in the ecologically important Perkinsozoa parasite Parvilucifera sinerae. These results demonstrate that the transcriptome of P. sinerae is segregated based on the addition of different spliced-leader (SL) exons. This segregation marks different gene categories, suggesting that SL-segregation relates to functional differentiation of the transcriptome. By contrast, both sets of gene categories are present in the single SL-transcript type sampled from Maranthos, implying that the SL-segregation of the Parvilucifera transcriptome is a recent evolutionary innovation. Furthermore, we show that the SLTS-system marks a subsection of the transcriptome with increased mRNA abundance and includes genes that encode the spliceosome system necessary for SLTS-function. Collectively, these data provide a picture of how the SLTS-systems can vary within a major evolutionary group and identify how additional transcriptional-complexity can be achieved through SL-segregation.


Assuntos
Parasitos , RNA Líder para Processamento , Animais , Eucariotos/genética , Parasitos/genética , Parasitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Líder para Processamento/genética , RNA Líder para Processamento/metabolismo , Trans-Splicing
4.
Commun Biol ; 3(1): 183, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317738

RESUMO

Global warming is rapidly altering physicochemical attributes of Arctic waters. These changes are predicted to alter microbial networks, potentially perturbing wider community functions including parasite infections and saprotrophic recycling of biogeochemical compounds. Specifically, the interaction between autotrophic phytoplankton and heterotrophic fungi e.g. chytrids (fungi with swimming tails) requires further analysis. Here, we investigate the diversity and distribution patterns of fungi in relation to abiotic variables during one record sea ice minimum in 2012 and explore co-occurrence of chytrids with diatoms, key primary producers in these changing environments. We show that chytrid fungi are primarily encountered at sites influenced by sea ice melt. Furthermore, chytrid representation positively correlates with sea ice-associated diatoms such as Fragilariopsis or Nitzschia. Our findings identify a potential future scenario where chytrid representation within these communities increases as a consequence of ice retreat, further altering community structure through perturbation of parasitic or saprotrophic interaction networks.


Assuntos
Diatomáceas/fisiologia , Fungos/fisiologia , Aquecimento Global , Regiões Árticas , DNA Ribossômico/genética , Ecossistema , Monitoramento Ambiental , Fungos/genética , Gelo , Filogenia , RNA Fúngico/genética , Ribotipagem , Água do Mar/microbiologia , Microbiologia da Água
5.
Mol Ecol Resour ; 18(2): 204-216, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29024430

RESUMO

Next-generation sequencing is a common method for analysing microbial community diversity and composition. Configuring an appropriate sequence processing strategy within the variety of tools and methods is a nontrivial task and can considerably influence the resulting community characteristics. We analysed the V4 region of 18S rRNA gene sequences of marine samples by 454-pyrosequencing. Along this process, we generated several data sets with QIIME, mothur, and a custom-made pipeline based on DNAStar and the phylogenetic tree-based PhyloAssigner. For all processing strategies, default parameter settings and punctual variations were used. Our results revealed strong differences in total number of operational taxonomic units (OTUs), indicating that sequence preprocessing and clustering had a major impact on protist diversity estimates. However, diversity estimates of the abundant biosphere (abundance of ≥1%) were reproducible for all conducted processing pipeline versions. A qualitative comparison of diatom genera emphasized strong differences between the pipelines in which phylogenetic placement of sequences came closest to light microscopy-based diatom identification. We conclude that diversity studies using different sequence processing strategies are comparable if the focus is on higher taxonomic levels, and if abundance thresholds are used to filter out OTUs of the rare biosphere.


Assuntos
Biota , Biologia Computacional/métodos , Diatomáceas/classificação , Diatomáceas/genética , Análise de Sequência de DNA/métodos , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , RNA Ribossômico 18S/genética
6.
J Eukaryot Microbiol ; 61(6): 569-79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24996010

RESUMO

Investigation of marine eukaryotic picoplankton composition is limited by missing morphological features for appropriate identification. Consequently, molecular methods are required. In this study, we used 454-pyrosequencing to study picoplankton communities at four stations in the West Spitsbergen Current (WSC; Fram Strait). High abundances of Micromonas pusilla were detected in the station situated closest to Spitsbergen, as seen in surveys of picoplankton assemblages in the Beaufort Sea. At the other three stations, other phylotypes, affiliating with Phaeocystis pouchetii and Syndiniales in the phylogenetic tree, were present in high numbers, dominating most of them. The picoplankton community structures at three of the stations, all with similar salinity and temperature, were alike. At the fourth station, the influence of the East Spitsbergen Current, transporting cold water from the Barents Sea around Spitsbergen, causes different abiotic parameters that result in a significantly different picoeukaryote community composition, which is dominated by M. pusilla. This observation is particularly interesting with regard to ongoing environmental changes in the Arctic. Ongoing warming of the WSC could convey a new picoplankton assemblage into the Arctic Ocean, which may come to affect the dominance of M. pusilla.


Assuntos
Eucariotos/classificação , Plâncton/classificação , Sequência de Bases , Biodiversidade , Clorófitas , Meio Ambiente , Eucariotos/genética , Eucariotos/isolamento & purificação , Oceanos e Mares , Filogenia , Plâncton/genética , Plâncton/isolamento & purificação , RNA Ribossômico 18S/genética , Svalbard , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...