Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(24): 6256-6265, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38843474

RESUMO

Large language models for artificial intelligence applications require energy-efficient computing. Neuromorphic photonics has the potential to reach significantly lower energy consumption in comparison with classical electronics. A recently proposed memlumor device uses photoluminescence output that carries information about its excitation history via the excited state dynamics of the material. Solution-processed metal halide perovskites can be used as efficient memlumors. We show that trapping of photogenerated charge carriers modulated by photoinduced dynamics of the trapping states themselves explains the memory response of perovskite memlumors on time scales from nanoseconds to minutes. The memlumor concept shifts the paradigm of the detrimental role of charge traps and their dynamics in metal halide perovskite semiconductors by enabling new applications based on these trap states. The appropriate control of defect dynamics in perovskites allows these materials to enter the field of energy-efficient photonic neuromorphic computing, which we illustrate by proposing several possible realizations of such systems.

2.
J Mater Chem C Mater ; 11(24): 8007-8017, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37362025

RESUMO

Exposure to environmental factors is generally expected to cause degradation in perovskite films and solar cells. Herein, we show that films with certain defect profiles can display the opposite effect, healing upon exposure to oxygen under illumination. We tune the iodine content of methylammonium lead triiodide perovskite from understoichiometric to overstoichiometric and expose them to oxygen and light prior to the addition of the top layers of the device, thereby examining the defect dependence of their photooxidative response in the absence of storage-related chemical processes. The contrast between the photovoltaic properties of the cells with different defects is stark. Understoichiometric samples indeed degrade, demonstrating performance at 33% of their untreated counterparts, while stoichiometric samples maintain their performance levels. Surprisingly, overstoichiometric samples, which show low current density and strong reverse hysteresis when untreated, heal to maximum performance levels (the same as untreated, stoichiometric samples) upon the photooxidative treatment. A similar, albeit smaller-scale, effect is observed for triple cation and methylammonium-free compositions, demonstrating the general application of this treatment to state-of-the-art compositions. We examine the reasons behind this response by a suite of characterization techniques, finding that the performance changes coincide with microstructural decay at the crystal surface, reorientation of the bulk crystal structure for the understoichiometric cells, and a decrease in the iodine-to-lead ratio of all films. These results indicate that defect engineering is a powerful tool to manipulate the stability of perovskite solar cells.

3.
Small Methods ; 5(10): e2100585, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34927929

RESUMO

The efficiency of bulk heterojunction (BHJ) based organic solar cells is highly dependent on the morphology of the blend film, which is a result of a fine interplay between donor, acceptor, and solvent during the film drying. In this work, a versatile set-up of in situ spectroscopies is used to follow the morphology evolution during blade coating of three iconic BHJ systems, including polymer:fullerene, polymer:nonfullerene small molecule, and polymer:polymer. the drying and photoluminescence quenching dynamics are systematically study during the film formation of both pristine and BHJ films, which indicate that the component with higher molecular weight dominates the blend film formation and the final morphology. Furthermore, Time-resolved photoluminescence, which is employed for the first time as an in situ method for such drying studies, allows to quantitatively determine the extent of dynamic and static quenching, as well as the relative change of quantum yield during film formation. This work contributes to a fundamental understanding of microstructure formation during the processing of different blend films. The presented setup is considered to be an important tool for the future development of blend inks for solution-cast organic or hybrid electronics.

4.
Nat Commun ; 12(1): 3329, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099662

RESUMO

Metal halide perovskites are an important class of emerging semiconductors. Their charge carrier dynamics is poorly understood due to limited knowledge of defect physics and charge carrier recombination mechanisms. Nevertheless, classical ABC and Shockley-Read-Hall (SRH) models are ubiquitously applied to perovskites without considering their validity. Herein, an advanced technique mapping photoluminescence quantum yield (PLQY) as a function of both the excitation pulse energy and repetition frequency is developed and employed to examine the validity of these models. While ABC and SRH fail to explain the charge dynamics in a broad range of conditions, the addition of Auger recombination and trapping to the SRH model enables a quantitative fitting of PLQY maps and low-power PL decay kinetics, and extracting trap concentrations and efficacies. However, PL kinetics at high power are too fast and cannot be explained. The proposed PLQY mapping technique is ideal for a comprehensive testing of theories and applicable to any semiconductor.

5.
J Phys Chem C Nanomater Interfaces ; 125(8): 4860-4868, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33763163

RESUMO

Metal halide perovskites show great promise for a wide range of optoelectronic applications but are plagued by instability when exposed to air and light. This work presents low-temperature solution growth of vertically aligned CsPbBr3 nanowire arrays in AAO (anodized aluminum oxide) templates with excellent stability, with samples exposed to air for 4 months still exhibiting comparable photoluminescence and UV stability to fresh samples. The single-crystal nanowire length is adjusted from ∼100 nm to 5 µm by adjusting the precursor solution amount and concentration, and we observe length-to-diameter ratios as high as 100. Structural characterization results indicate that large-diameter CsPbBr3 nanowires have an orthorhombic structure, while the 10 nm- and 20 nm-diameter nanowires adopt a cubic structure. Photoluminescence shows a gradual blue-shift in emission with decreasing nanowire diameter and marginal changes under varying illumination power intensity. The CsPbBr3-nanowires/AAO composite exhibits excellent resistance to X-ray radiation and long-term air storage, which makes it promising for future optoelectronic applications such as X-ray scintillators. These results show how physical confinement in AAO can be used to realize CsPbBr3 nanowire arrays and control their morphology and crystal structure.

6.
Nat Commun ; 10(1): 1698, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979903

RESUMO

Organo-metal halide perovskites are promising solution-processed semiconductors, however, they possess diverse and largely not understood non-radiative mechanisms. Here, we resolve contributions of individual non-radiative recombination centers (quenchers) in nanocrystals of methylammonium lead iodide by studying their photoluminescence blinking caused by random switching of quenchers between active and passive states. We propose a model to describe the observed reduction of blinking upon cooling and determine energetic barriers of 0.2 to 0.8 eV for enabling the switching process, which points to ion migration as the underlying mechanism. Moreover, due to the strong influence of individual quenchers, the crystals show very individually-shaped photoluminescence enhancement upon cooling, suggesting that the high variety of activation energies of the PL enhancement reported in literature is not related to intrinsic properties but rather to the defect chemistry. Stabilizing the fluctuating quenchers in their passive states thus appears to be a promising strategy for improving the material quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...