Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biophys Rep (N Y) ; 4(1): 100142, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38313863

RESUMO

Active nematics is an emerging paradigm for characterizing biological systems. One aspect of particularly intense focus is the role active nematic defects play in these systems, as they have been found to mediate a growing number of biological processes. Accurately detecting and classifying these defects in biological systems is, therefore, of vital importance to improving our understanding of such processes. While robust methods for defect detection exist for systems of elongated constituents, other systems, such as epithelial layers, are not well suited to such methods. Here, we address this problem by developing a convolutional neural network to detect and classify nematic defects in confluent cell layers. Crucially, our method is readily implementable on experimental images of cell layers and is specifically designed to be suitable for cells that are not rod shaped, which we demonstrate by detecting defects on experimental data using the trained model. We show that our machine learning model outperforms current defect detection techniques and that this manifests itself in our method as requiring less data to accurately capture defect properties. This could drastically improve the accuracy of experimental data interpretation while also reducing costs, advancing the study of nematic defects in biological systems.

2.
Phys Rev Lett ; 128(7): 078001, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35244433

RESUMO

How can a collection of motile cells, each generating contractile nematic stresses in isolation, become an extensile nematic at the tissue level? Understanding this seemingly contradictory experimental observation, which occurs irrespective of whether the tissue is in the liquid or solid states, is not only crucial to our understanding of diverse biological processes, but is also of fundamental interest to soft matter and many-body physics. Here, we resolve this cellular to tissue level disconnect in the small fluctuation regime by using analytical theories based on hydrodynamic descriptions of confluent tissues, in both liquid and solid states. Specifically, we show that a collection of microscopic constituents with no inherently nematic extensile forces can exhibit active extensile nematic behavior when subject to polar fluctuating forces. We further support our findings by performing cell level simulations of minimal models of confluent tissues.


Assuntos
Hidrodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...