Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 26(7): 1734-1746, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28222239

RESUMO

Evolutionary rescue (ER) occurs when populations, which have declined due to rapid environmental change, recover through genetic adaptation. The success of this process and the evolutionary trajectory of the population strongly depend on the rate of environmental change. Here we investigated how different rates of temperature increase (from 23 to 32 °C) affect population persistence and evolutionary change in experimental microcosms of the protozoan Paramecium caudatum. Consistent with theory on ER, we found that those populations experiencing the slowest rate of temperature increase were the least likely to become extinct and tended to be the best adapted to the new temperature environment. All high-temperature populations were more tolerant to severe heat stress (35, 37 °C), indicating a common mechanism of heat protection. High-temperature populations also had superior growth rates at optimum temperatures, leading to the absence of a pattern of local adaptation to control (23 °C) and high-temperature (32 °C) environments. However, high-temperature populations had reduced growth at low temperatures (5-9 °C), causing a shift in the temperature niche. In part, the observed evolutionary change can be explained by selection from standing variation. Using mitochondrial markers, we found complete divergence between control and high-temperature populations in the frequencies of six initial founder genotypes. Our results confirm basic predictions of ER and illustrate how adaptation to an extreme local environment can produce positive as well as negative correlated responses to selection over the entire range of the ecological niche.


Assuntos
Evolução Molecular , Paramecium/genética , Seleção Genética , Temperatura , Termotolerância/genética , Genótipo , Fenótipo , Dinâmica Populacional
2.
Mov Ecol ; 2: 15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27148450

RESUMO

BACKGROUND: Dispersal has a critical influence on demography and gene flow and as such maintaining connectivity between populations is an essential element of modern conservation. Advances in satellite radiotelemetry are providing new opportunities to document dispersal, which previously has been difficult to study. This type of data also can be used as an empirical basis for defining landscapes in terms of resistance surfaces, enabling habitat corridors to be identified. However, despite the scale-dependent nature of habitat selection few studies have investigated selection specifically during dispersal. Here we investigate habitat selection during and around dispersal periods as well as the influence of age and sex on dispersal for a large ungulate. RESULTS: Of 158 elk (Cervus elaphus) tracked using GPS radiotelemetry almost all dispersers were males, with individuals dispersing up to 98 km. The dispersal period was distinct, with higher movement rates than before or after dispersal. At fine scale elk avoided the most rugged terrain in all time periods, but to a greater extent during and after dispersal, which we showed using step selection functions. In contrast, habitat selection by resident elk was less affected by ruggedness and more by an attraction to areas of higher forage availability. At the broad scale, however, movement corridors of dispersers were characterized by higher forage availability and slightly lower ruggedness then expected using correlated random walks. CONCLUSIONS: In one of the first examples of its kind we document complete long-distance dispersal events by an ungulate in detail. We find dispersal to be distinct in terms of movement rate and also find evidence that habitat selection during dispersal may differ from habitat selection in the home-range, with potential implications for the use of resistance surfaces to define conservation corridors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...