Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 147(8)2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341028

RESUMO

Runx1 is a transcription factor that plays a key role in determining the proliferative and differential state of multiple cell types, during both development and adulthood. Here, we report how Runx1 is specifically upregulated at the injury site during zebrafish heart regeneration, and that absence of runx1 results in increased myocardial survival and proliferation, and overall heart regeneration, accompanied by decreased fibrosis. Using single cell sequencing, we found that the wild-type injury site consists of Runx1-positive endocardial cells and thrombocytes that induce expression of smooth muscle and collagen genes. Both these populations cannot be identified in runx1 mutant wounds that contain less collagen and fibrin. The reduction in fibrin in the mutant is further explained by reduced myofibroblast formation and upregulation of components of the fibrin degradation pathway, including plasminogen receptor annexin 2A as well as downregulation of plasminogen activator inhibitor serpine1 in myocardium and endocardium, resulting in increased levels of plasminogen. Our findings suggest that Runx1 controls the regenerative response of multiple cardiac cell types and that targeting Runx1 is a novel therapeutic strategy for inducing endogenous heart repair.


Assuntos
Cicatriz/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Coração/fisiopatologia , Miocárdio/patologia , Regeneração , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Anexina A2/metabolismo , Proliferação de Células , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Endocárdio/patologia , Regulação da Expressão Gênica no Desenvolvimento , Músculo Liso/metabolismo , Mutação/genética , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Cadeias Pesadas de Miosina/metabolismo , Regulação para Cima/genética , Proteínas de Peixe-Zebra/genética
2.
Brain Struct Funct ; 224(1): 277-292, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30315415

RESUMO

Cortical interneurons are born in the ventral forebrain and migrate tangentially in two streams at the levels of the intermediate zone (IZ) and the pre-plate/marginal zone to the developing cortex where they switch to radial migration before settling in their final positions in the cortical plate. In a previous attempt to identify the molecules that regulate stream specification, we performed transcriptomic analysis of GFP-labelled interneurons taken from the two migratory streams during corticogenesis. A number of cadherins were found to be expressed differentially, with Cadherin-8 (Cdh8) selectively present in the IZ stream. We verified this expression pattern at the mRNA and protein levels on tissue sections and found approximately half of the interneurons of the IZ expressed Cdh8. Furthermore, this cadherin was also detected in the germinal zones of the subpallium, suggesting that it might be involved not only in the migration of interneurons but also in their generation. Quantitative analysis of cortical interneurons in animals lacking the cadherin at E18.5 revealed a significant increase in their numbers. Subsequent functional in vitro experiments showed that blocking Cdh8 function led to increased cell proliferation, with the opposite results observed with over-expression, supporting its role in interneuron generation.


Assuntos
Caderinas/metabolismo , Proliferação de Células , Córtex Cerebral/metabolismo , Interneurônios/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Animais , Apoptose , Células COS , Caderinas/deficiência , Caderinas/genética , Córtex Cerebral/embriologia , Quimiotaxia , Chlorocebus aethiops , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Transcriptoma
3.
Cell Rep ; 25(8): 1997-2007.e7, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30462998

RESUMO

Although Astyanax mexicanus surface fish regenerate their hearts after injury, their Pachón cave-dwelling counterparts cannot and, instead, form a permanent fibrotic scar, similar to the human heart. Myocardial proliferation peaks at similar levels in both surface fish and Pachón 1 week after injury. However, in Pachón, this peak coincides with a strong scarring and immune response, and ultimately, cavefish cardiomyocytes fail to replace the scar. We identified lrrc10 to be upregulated in surface fish compared with Pachón after injury. Similar to cavefish, knockout of lrrc10 in zebrafish impairs heart regeneration without affecting wound cardiomyocyte proliferation. Furthermore, using quantitative trait locus (QTL) analysis, we have linked the degree of heart regeneration to three loci in the genome, identifying candidate genes fundamental to the difference between scarring and regeneration. Our study provides evidence that successful heart regeneration entails a delicate interplay between cardiomyocyte proliferation and scarring.


Assuntos
Characidae/fisiologia , Coração/fisiologia , Regeneração/fisiologia , Animais , Proliferação de Células , Characidae/genética , Cinética , Mutação/genética , Miocárdio/citologia , Miócitos Cardíacos/citologia , Locos de Características Quantitativas/genética , Regulação para Cima , Cicatrização , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/metabolismo
4.
Dev Biol ; 441(2): 272-284, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29940142

RESUMO

Regulation of heart size and shape is one of the least understood processes in developmental biology. We have for the first time analysed the hearts of Astyanax mexicanus and identified several differences in heart morphology between the surface (epigean morph) and cave-dwelling (troglomorph) morphs. Examination of the adult revealed that the troglomorph possesses a smaller heart with a rounder ventricle in comparison to the epigean morph. The size differences identified appear to arise early in development, as early as 24 h post-fertilisation (hpf), while shape differences begin to appear at 2 days post-fertilisation. The heart of the first-generation cross between the cave-dwelling and river-dwelling morph shows uncoupling of different phenotypes observed in the parental populations and indicates that the cardiac differences have become embedded in the genome during evolution. The differences in heart morphology are accompanied by functional changes between the two morphs, with the cave-dwelling morph exhibiting a slower heart rate than the river-dwelling morph. The identification of morphological and functional differences in the A. mexicanus heart could allow us to gain more insight into how such parameters are regulated during cardiac development, with potential relevance to cardiac pathologies in humans.


Assuntos
Caraciformes , Cruzamentos Genéticos , Evolução Molecular , Genoma/fisiologia , Frequência Cardíaca/fisiologia , Coração/embriologia , Animais , Caraciformes/embriologia , Caraciformes/genética , Humanos , Tamanho do Órgão
5.
Brain Struct Funct ; 222(8): 3567-3585, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28386779

RESUMO

Cortical interneurons are generated in the ganglionic eminences and migrate through the ventral and dorsal telencephalon before finding their final positions within the cortical plate. During early stages of migration, these cells are present in two well-defined streams within the developing cortex. In an attempt to identify candidate genes which may play a role in interneuron stream specification, we previously carried out a microarray analysis which identified a number of cadherin receptors that were differentially expressed in these streams, including Cadherin-13 (Cdh13). Expression analysis confirmed Cdh13 to be present in the preplate layer at E13.5 and, later in development, in some cortical interneurons and pyramidal cells. Analysis of Cdh13 knockout mice at E18.5, but not at E15.5, showed a reduction in the number of interneurons and late born pyramidal neurons and a concomitant increase in apoptotic cells in the cortex. These observations were confirmed in dissociated cell cultures using overexpression and short interfering RNAs (siRNAs) constructs and dominant negative inhibitory proteins. Our findings identified a novel protective role for Cdh13 in cortical neuron development.


Assuntos
Caderinas/fisiologia , Córtex Cerebral/embriologia , Interneurônios/fisiologia , Animais , Apoptose , Caderinas/genética , Caderinas/metabolismo , Contagem de Células , Movimento Celular , Proliferação de Células , Células Cultivadas , Córtex Cerebral/metabolismo , Feminino , Expressão Gênica , Interneurônios/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...