Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Microbiol Resour Announc ; 13(6): e0116823, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38651916

RESUMO

We sequenced the genome of a hirame novirhabdovirus isolate recovered from a white bass (Morone chrysops). Hirame novirhabdoviruses are in the genus Novirhabdovirus, along with infectious hematopoietic necrosis virus and viral hemorrhagic septicemia virus. This detection highlights that the full host range of rhabdoviruses in fish is not fully understood.

2.
Emerg Infect Dis ; 30(4): 738-751, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38478379

RESUMO

Highly pathogenic avian influenza (HPAI) viruses have potential to cross species barriers and cause pandemics. Since 2022, HPAI A(H5N1) belonging to the goose/Guangdong 2.3.4.4b hemagglutinin phylogenetic clade have infected poultry, wild birds, and mammals across North America. Continued circulation in birds and infection of multiple mammalian species with strains possessing adaptation mutations increase the risk for infection and subsequent reassortment with influenza A viruses endemic in swine. We assessed the susceptibility of swine to avian and mammalian HPAI H5N1 clade 2.3.4.4b strains using a pathogenesis and transmission model. All strains replicated in the lung of pigs and caused lesions consistent with influenza A infection. However, viral replication in the nasal cavity and transmission was only observed with mammalian isolates. Mammalian adaptation and reassortment may increase the risk for incursion and transmission of HPAI viruses in feral, backyard, or commercial swine.


Assuntos
Virus da Influenza A Subtipo H5N1 , Infecções por Orthomyxoviridae , Animais , Aves , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária , Mamíferos , Filogenia , Aves Domésticas , Suínos
3.
Avian Pathol ; 53(4): 242-246, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38345041

RESUMO

Based on the pathogenicity in chickens, most H1-H16 avian influenza viruses (AIV) cause mild diseases, whereas some of the H5 and H7 AI viruses cause severe, systemic disease. The number of basic amino acids in the haemagglutinin (HA) cleavage site of AIV plays a critical role in pathogenicity. As we gain a greater understanding of the molecular mechanisms of pathogenicity, genome sequencing of the HA0 cleavage site has assumed a greater role in assessment of the potential pathogenicity of H5 and H7 viruses. We validated the use of HA cleavage site motif analysis by comparing molecular pathotyping data against experimental in vivo (intravenous pathogenicity index [IVPI] and lethality) data for determination of both low pathogenicity and high pathogenicity AI virus declaration with the goal of expediting pathotype confirmation and further reducing the reliance on in vivo testing. Our data provide statistical support to the continued use of molecular determination of pathotype for AI viruses based on the HA cleavage site sequence in the absence of an in vivo study determination. This approach not only expedites the declaration process of highly pathogenic AIV (HPAIV) but also reduces the need for experimental in vivo testing of H5 and H7 viruses.


Assuntos
Galinhas , Genoma Viral , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A , Influenza Aviária , Animais , Influenza Aviária/virologia , Galinhas/virologia , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virulência , Fenótipo , Doenças das Aves Domésticas/virologia
4.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38260375

RESUMO

Migratory waterfowl, gulls, and shorebirds serve as natural reservoirs for influenza A viruses, with potential spillovers to domestic poultry and humans. The intricacies of interspecies adaptation among avian species, particularly from wild birds to domestic poultry, are not fully elucidated. In this study, we investigated the molecular mechanisms underlying avian species barriers in H7 transmission, particularly the factors responsible for the disproportionate distribution of poultry infected with A/Anhui/1/2013 (AH/13)-lineage H7N9 viruses. We hypothesized that the differential expression of N-glycolylneuraminic acid (Neu5Gc) among avian species exerts selective pressure on H7 viruses, shaping their evolution and enabling them to replicate and transmit efficiently among gallinaceous poultry, particularly chickens. Our glycan microarray and biolayer interferometry experiments showed that AH/13-lineage H7N9 viruses exclusively bind to Neu5Ac, in contrast to wild waterbird H7 viruses that bind both Neu5Ac and Neu5Gc. Significantly, reverting the V179 amino acid in AH/13-lineage back to the I179, predominantly found in wild waterbirds, expanded the binding affinity of AH/13-lineage H7 viruses from exclusively Neu5Ac to both Neu5Ac and Neu5Gc. When cultivating H7 viruses in cell lines with varied Neu5Gc levels, we observed that Neu5Gc expression impairs the replication of Neu5Ac-specific H7 viruses and facilitates adaptive mutations. Conversely, Neu5Gc deficiency triggers adaptive changes in H7 viruses capable of binding to both Neu5Ac and Neu5Gc. Additionally, we assessed Neu5Gc expression in the respiratory and gastrointestinal tissues of seven avian species, including chickens, Canada geese, and various dabbling ducks. Neu5Gc was absent in chicken and Canada goose, but its expression varied in the duck species. In summary, our findings reveal the crucial role of Neu5Gc in shaping the host range and interspecies transmission of H7 viruses. This understanding of virus-host interactions is crucial for developing strategies to manage and prevent influenza virus outbreaks in diverse avian populations.

5.
Animals (Basel) ; 13(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37835700

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been reported in multiple animal species besides humans. The goal of this study was to report clinical signs, infection progression, virus detection and antibody response in a group of wild felids housed in adjacent but neighboring areas at the Pittsburgh Zoo. Initially, five African lions (Panthera leo krugeri) housed together exhibited respiratory clinical signs with viral shedding in their feces in March of 2021 coinciding with infection of an animal keeper. During the second infection wave in December 2021, four Amur tigers (Panthera tigris altaica) and a Canadian lynx (Lynx canadensis) showed clinical signs and tested positive for viral RNA in feces. In infected animals, viral shedding in feces was variable lasting up to 5 weeks and clinical signs were observed for up to 4 weeks. Despite mounting an antibody response to initial exposure, lions exhibited respiratory clinical signs during the second infection wave, but none shed the virus in their feces. The lions were positive for alpha variant (B.1.1.7 lineage) during the first wave and the tiger and lynx were positive for delta variant (AY.25.1. lineage) during the second wave. The viruses recovered from felids were closely related to variants circulating in human populations at the time of the infection. Cheetahs (Acinonyx jubatus) in the park did not show either the clinical signs or the antibody response.

6.
Virology ; 587: 109860, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572517

RESUMO

Highly pathogenic avian influenza viruses (HPAIVs) of the A/goose/Guangdong/1/1996 lineage H5 clade 2.3.4.4b continue to have a devastating effect on domestic and wild birds. Full genome sequence analyses using 1369 H5N1 HPAIVs detected in the United States (U.S.) in wild birds, commercial poultry, and backyard flocks from December 2021 to April 2022, showed three phylogenetically distinct H5N1 virus introductions in the U.S. by wild birds. Unreassorted Eurasian genotypes A1 and A2 entered the Northeast Atlantic states, whereas a genetically distinct A3 genotype was detected in Alaska. The A1 genotype spread westward via wild bird migration and reassorted with North American wild bird avian influenza viruses. Reassortments of up to five internal genes generated a total of 21 distinct clusters; of these, six genotypes represented 92% of the HPAIVs examined. By phylodynamic analyses, most detections in domestic birds were shown to be point-source transmissions from wild birds, with limited farm-to-farm spread.

7.
Antiviral Res ; 217: 105679, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37494978

RESUMO

Clade 2.3.4.4b highly pathogenic avian influenza (HPAI) A(H5N1) viruses that are responsible for devastating outbreaks in birds and mammals pose a potential threat to public health. Here, we evaluated their susceptibility to influenza antivirals. Of 1,015 sequences of HPAI A(H5N1) viruses collected in the United States during 2022, eight viruses (∼0.8%) had a molecular marker of drug resistance to an FDA-approved antiviral: three adamantane-resistant (M2-V27A), four oseltamivir-resistant (NA-H275Y), and one baloxavir-resistant (PA-I38T). Additionally, 31 viruses contained mutations that may reduce susceptibility to inhibitors of neuraminidase (NA) (n = 20) or cap-dependent endonuclease (CEN) (n = 11). A panel of 22 representative viruses was tested phenotypically. Overall, clade 2.3.4.4b A(H5N1) viruses lacking recognized resistance mutations were susceptible to FDA-approved antivirals. Oseltamivir was least potent at inhibiting NA activity, while the investigational NA inhibitor AV5080 was most potent, including against NA mutants. A novel NA substitution T438N conferred 12-fold reduced inhibition by zanamivir, and in combination with the known marker N295S, synergistically affected susceptibility to all five NA inhibitors. In cell culture-based assays HINT and IRINA, the PA-I38T virus displayed 75- to 108-fold and 37- to 78-fold reduced susceptibility to CEN inhibitors, baloxavir and the investigational AV5116, respectively. Viruses with PA-I38M or PA-A37T showed 5- to 10-fold reduced susceptibilities. As HPAI A(H5N1) viruses continue to circulate and evolve, close monitoring of drug susceptibility is needed for risk assessment and to inform decisions regarding antiviral stockpiling.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Animais , Estados Unidos/epidemiologia , Antivirais/farmacologia , Oseltamivir/farmacologia , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Inibidores Enzimáticos/farmacologia , Aves , Mamíferos , Farmacorresistência Viral/genética , Neuraminidase
8.
J Appl Lab Med ; 8(4): 726-741, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37222567

RESUMO

BACKGROUND: Throughout the COVID-19 pandemic, veterinary diagnostic laboratories have tested diagnostic samples for SARS-CoV-2 both in animals and over 6 million human samples. An evaluation of the performance of those laboratories is needed using blinded test samples to ensure that laboratories report reliable data to the public. This interlaboratory comparison exercise (ILC3) builds on 2 prior exercises to assess whether veterinary diagnostic laboratories can detect Delta and Omicron variants spiked in canine nasal matrix or viral transport medium. METHODS: The ILC organizer was an independent laboratory that prepared inactivated Delta variant at levels of 25 to 1000 copies per 50 µL of nasal matrix for blinded analysis. Omicron variant at 1000 copies per 50 µL of transport medium was also included. Feline infectious peritonitis virus (FIPV) RNA was used as a confounder for specificity assessment. Fourteen test samples were prepared for each participant. Participants used their routine diagnostic procedures for RNA extraction and real-time reverse transcriptase-PCR. Results were analyzed according to International Organization for Standardization (ISO) 16140-2:2016. RESULTS: Overall, laboratories demonstrated 93% detection for Delta and 97% for Omicron at 1000 copies per 50 µL. Specificity was 97% for blank samples and 100% for blank samples with FIPV. No differences in Cycle Threshold (Ct) values were significant for samples with the same virus levels between N1 and N2 markers, nor between the 2 variants. CONCLUSIONS: The results indicated that all ILC3 participants were able to detect both Delta and Omicron variants. The canine nasal matrix did not significantly affect SARS-CoV-2 detection.


Assuntos
COVID-19 , SARS-CoV-2 , Gatos , Humanos , Animais , Cães , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/veterinária , Laboratórios , Pandemias , RNA , Teste para COVID-19
9.
Microorganisms ; 11(2)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36838494

RESUMO

As exemplified by the global response to the SARS-CoV-2 pandemic, whole-genome sequencing played an important role in monitoring the evolution of novel viral variants and provided guidance on potential antiviral treatments. The recent rapid and extensive introduction and spread of highly pathogenic avian influenza virus in Europe, North America, and elsewhere raises the need for similarly rapid sequencing to aid in appropriate response and mitigation activities. To facilitate this objective, we investigate a next-generation sequencing platform that uses a portable nanopore sequencing device to generate and present data in real time. This platform offers the potential to extend in-house sequencing capacities to laboratories that may otherwise lack resources to adopt sequencing technologies requiring large benchtop instruments. We evaluate this platform for routine use in a diagnostic laboratory. In this study, we evaluate different primer sets for the whole genome amplification of influenza A virus and evaluate five different library preparation approaches for sequencing on the nanopore platform using the MinION flow cell. A limited amplification procedure and a rapid procedure are found to be best among the approaches taken.

10.
J Am Vet Med Assoc ; 261(4): 480-489, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36595371

RESUMO

OBJECTIVE: To characterize clinical and epidemiologic features of SARS-CoV-2 in companion animals detected through both passive and active surveillance in the US. ANIMALS: 204 companion animals (109 cats, 95 dogs) across 33 states with confirmed SARS-CoV-2 infections between March 2020 and December 2021. PROCEDURES: Public health officials, animal health officials, and academic researchers investigating zoonotic SARS-CoV-2 transmission events reported clinical, laboratory, and epidemiologic information through a standardized One Health surveillance process developed by the CDC and partners. RESULTS: Among dogs and cats identified through passive surveillance, 94% (n = 87) had reported exposure to a person with COVID-19 before infection. Clinical signs of illness were present in 74% of pets identified through passive surveillance and 27% of pets identified through active surveillance. Duration of illness in pets averaged 15 days in cats and 12 days in dogs. The average time between human and pet onset of illness was 10 days. Viral nucleic acid was first detected at 3 days after exposure in both cats and dogs. Antibodies were detected starting 5 days after exposure, and titers were highest at 9 days in cats and 14 days in dogs. CLINICAL RELEVANCE: Results of the present study supported that cats and dogs primarily become infected with SARS-CoV-2 following exposure to a person with COVID-19, most often their owners. Case investigation and surveillance that include both people and animals are necessary to understand transmission dynamics and viral evolution of zoonotic diseases like SARS-CoV-2.


Assuntos
COVID-19 , Doenças do Gato , Doenças do Cão , Animais , Gatos , Humanos , Cães , Estados Unidos/epidemiologia , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/veterinária , Doenças do Gato/epidemiologia , Doenças do Cão/epidemiologia , Zoonoses/epidemiologia , Animais de Estimação
11.
J Vet Diagn Invest ; 34(5): 825-834, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35983593

RESUMO

The COVID-19 pandemic presents a continued public health challenge. Veterinary diagnostic laboratories in the United States use RT-rtPCR for animal testing, and many laboratories are certified for testing human samples; hence, ensuring that laboratories have sensitive and specific SARS-CoV2 testing methods is a critical component of the pandemic response. In 2020, the FDA Veterinary Laboratory Investigation and Response Network (Vet-LIRN) led an interlaboratory comparison (ILC1) to help laboratories evaluate their existing RT-rtPCR methods for detecting SARS-CoV2. All participating laboratories were able to detect the viral RNA spiked in buffer and PrimeStore molecular transport medium (MTM). With ILC2, Vet-LIRN extended ILC1 by evaluating analytical sensitivity and specificity of the methods used by participating laboratories to detect 3 SARS-CoV2 variants (B.1; B.1.1.7 [Alpha]; B.1.351 [Beta]) at various copy levels. We analyzed 57 sets of results from 45 laboratories qualitatively and quantitatively according to the principles of ISO 16140-2:2016. More than 95% of analysts detected the SARS-CoV2 RNA in MTM at ≥500 copies for all 3 variants. In addition, for nucleocapsid markers N1 and N2, 81% and 92% of the analysts detected ≤20 copies in the assays, respectively. The analytical specificity of the evaluated methods was >99%. Participating laboratories were able to assess their current method performance, identify possible limitations, and recognize method strengths as part of a continuous learning environment to support the critical need for the reliable diagnosis of COVID-19 in potentially infected animals and humans.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/diagnóstico , COVID-19/veterinária , Teste para COVID-19 , Humanos , Imunidade Inata , Laboratórios , Linfócitos , Pandemias/veterinária , RNA Viral/análise , SARS-CoV-2/genética , Sensibilidade e Especificidade , Estados Unidos/epidemiologia
12.
J Virol ; 96(14): e0027822, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35862690

RESUMO

The incursions of H7 subtype low-pathogenicity avian influenza virus (LPAIV) from wild birds into poultry and its mutations to highly pathogenic avian influenza virus (HPAIV) have been an ongoing concern in North America. Since 2000, 10 phylogenetically distinct H7 virus outbreaks from wild birds have been detected in poultry, six of which mutated to HPAIV. To study the molecular evolution of the H7 viruses that occurs when changing hosts from wild birds to poultry, we performed analyses of the North American H7 hemagglutinin (HA) genes to identify amino acid changes as the virus circulated in wild birds from 2000 to 2019. Then, we analyzed recurring HA amino acid changes and gene constellations of the viruses that spread from wild birds to poultry. We found six HA amino acid changes occurring during wild bird circulation and 10 recurring changes after the spread to poultry. Eight of the changes were in and around the HA antigenic sites, three of which were supported by positive selection. Viruses from each H7 outbreak had a unique genotype, with no specific genetic group associated with poultry outbreaks or mutation to HPAIV. However, the genotypes of the H7 viruses in poultry outbreaks tended to contain minor genetic groups less observed in wild bird H7 viruses, suggesting either a biased sampling of wild bird AIVs or a tendency of having reassortment with minor genetic groups prior to the virus's introduction to poultry. IMPORTANCE Wild bird-origin H7 subtype avian influenza viruses are a constant threat to commercial poultry, both directly by the disease they cause and indirectly through trade restrictions that can be imposed when the virus is detected in poultry. It is important to understand the genetic basis of why the North American lineage H7 viruses have repeatedly crossed the species barrier from wild birds to poultry. We examined the amino acid changes in the H7 viruses associated with poultry outbreaks and tried to determine gene reassortment related to poultry adaptation and mutations to HPAIV. The findings in this study increase the understanding of the evolutionary pathways of wild bird AIV before infecting poultry and the HA changes associated with adaptation of the virus in poultry.


Assuntos
Evolução Molecular , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A , Influenza Aviária , Doenças das Aves Domésticas , Aminoácidos/genética , Animais , Animais Selvagens , Aves , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/genética , América do Norte , Filogenia , Aves Domésticas , Doenças das Aves Domésticas/virologia
13.
Transbound Emerg Dis ; 69(5): e3346-e3351, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35698174

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of seven coronaviruses known to infect humans. Different from other concerned coronavirus and influenza viruses, SARS-CoV-2 has a higher basic reproduction number and thus transmits more efficiently among hosts. Testing animals for SARS-CoV-2 may help decipher virus reservoirs, transmission and pathogenesis. Here, we report the first detection of SARS-CoV-2 in three snow leopards (Panthera uncia) in a zoo in Kentucky in 2020, the first year of the pandemic. Sequence analysis revealed that snow leopard SARS-CoV-2 strains were non-variant B.1.2 lineage and closely correlated with human strains. One snow leopard shed SARS-CoV-2 in faeces up to 4 weeks. Based on clinical signs and viral shedding periods and levels in the three snow leopards, animal-to-animal transmission events could not be excluded. Further testing of SARS-CoV-2 in animals is needed.


Assuntos
COVID-19 , Panthera , Animais , COVID-19/veterinária , Humanos , Pandemias , SARS-CoV-2
14.
Emerg Infect Dis ; 28(5): 1006-1011, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35302933

RESUMO

We detected Eurasian-origin highly pathogenic avian influenza A(H5N1) virus belonging to the Gs/GD lineage, clade 2.3.4.4b, in wild waterfowl in 2 Atlantic coastal states in the United States. Bird banding data showed widespread movement of waterfowl within the Atlantic Flyway and between neighboring flyways and northern breeding grounds.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , Animais Selvagens , Aves , Humanos , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Filogenia , Estados Unidos/epidemiologia
15.
Transbound Emerg Dis ; 69(3): 1656-1658, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33955193

RESUMO

As part of a longitudinal household transmission study of pets living with persons with COVID-19 in Texas, two pets were confirmed to be infected with the SARS-CoV-2 B.1.1.7 variant of concern (VOC). The pets were a dog and a cat from the same household, sampled two days after their owner tested positive for COVID-19. The oral, nasal and fur swabs for both pets tested positive for SARS-CoV-2 by qRT-PCR and consensus whole-genome sequences from the dog and cat were 100% identical and matched the B.1.1.7 VOC. Virus was isolated from the cat's nasal swab. One month after initial detection of infection, the pets were re-tested twice at which time only the fur swabs (both pets) and oral swab (dog only) remained positive, and neutralizing antibodies for SARS-CoV-2 were present in both animals. Sneezing by both pets was noted by the owner in the weeks between initial and follow-up testing. This study documents the first detection of B.1.1.7. in companion animals in the United States, and the first genome recovery and isolation of B.1.1.7 variant of concern globally in any animal.


Assuntos
COVID-19 , Doenças do Gato , Doenças do Cão , Animais , COVID-19/diagnóstico , COVID-19/veterinária , Doenças do Gato/diagnóstico , Doenças do Gato/epidemiologia , Gatos , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia , Cães , Humanos , SARS-CoV-2 , Texas
16.
J Vet Diagn Invest ; 34(1): 82-85, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34697977

RESUMO

Mink are susceptible to infection with influenza A virus (IAV) of swine and human origin. In 2019, a Utah mink farm had an outbreak of respiratory disease in kits caused by infection with the pandemic influenza A(H1N1)2009 virus [A(H1N1)pdm09]. In 3 wk, ~325, 1-2-wk-old kits died (10% mortality in kits). All deaths occurred in a single barn that housed 640 breeding females. No clinical signs or deaths occurred among adult mink. Five dead kits and 3 euthanized female mink were autopsied. All kits had moderate-to-severe neutrophilic and lymphohistiocytic interstitial pneumonia; adult mink had minimal-to-moderate lymphohistiocytic bronchointerstitial pneumonia. Immunohistochemistry and real-time PCR targeting the matrix gene detected IAV in lung of kits and adults. Virus isolation and genetic analysis identified the A(H1N1)pdm09 virus. The source of the virus was not determined but is thought to be the result of reverse zoonosis. Our case emphasizes the need for close monitoring on mink farms for interspecies transmission of IAV and for safe work practices on farms and in diagnostic laboratories. Additionally, a pandemic virus may continue to circulate at low levels long after the global event is declared over.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vison , Infecções por Orthomyxoviridae/veterinária , Animais , Fazendas , Feminino , Vírus da Influenza A Subtipo H1N1/genética , Masculino , Vison/virologia , Infecções por Orthomyxoviridae/epidemiologia , Utah/epidemiologia
17.
Vet Med Sci ; 8(2): 899-906, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34910368

RESUMO

BACKGROUND AND OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), besides causing human infection, has been shown to naturally infect several susceptible animal species including large cats (tigers, lions, pumas, spotted leopards), dogs, cats, ferrets, gorillas and minks. Cats and minks are continuing to be the most reported species with SARS-CoV-2 infections among animals but it needs to be investigated further. METHODS AND RESULTS: We report the detection of SARS-CoV-2 from a domestic cat that exhibited respiratory disease after being exposed to SARS-CoV-2 virus from humans in the same household. SARS-CoV-2 RNA was detected in two oropharyngeal swabs collected at two time points, 11 days apart; the first, when the cat was reported to be sick and the second, before euthanasia due to poor prognosis. The viral nucleic acid detected at two time points showed no genomic variation and resembled the clade GH circulating in humans in the United States. Clinical and pathological findings noted in this 16-year-old cat were consistent with respiratory and cardiac insufficiency. CONCLUSIONS: SARS-CoV-2 viral infection was likely an incidental clinical finding, as the virus was not detected in fixed lungs, heart, or kidney tissues. Only fresh lung tissue collected at necropsy showed the presence of viral nucleic acid, albeit at a very low level. Further research is needed to clarify the clinical course of SARS-CoV-2 in companion animals of advanced age and underlying cardiac disease.


Assuntos
COVID-19 , Doenças do Gato , Animais , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/veterinária , Doenças do Gato/diagnóstico , Doenças do Gato/epidemiologia , Gatos , Humanos , Pennsylvania/epidemiologia , RNA Viral/genética , SARS-CoV-2
18.
Viruses ; 13(10)2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34696445

RESUMO

In summer 2020, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was detected on mink farms in Utah. An interagency One Health response was initiated to assess the extent of the outbreak and included sampling animals from on or near affected mink farms and testing them for SARS-CoV-2 and non-SARS coronaviruses. Among the 365 animals sampled, including domestic cats, mink, rodents, raccoons, and skunks, 261 (72%) of the animals harbored at least one coronavirus. Among the samples that could be further characterized, 127 alphacoronaviruses and 88 betacoronaviruses (including 74 detections of SARS-CoV-2 in mink) were identified. Moreover, at least 10% (n = 27) of the coronavirus-positive animals were found to be co-infected with more than one coronavirus. Our findings indicate an unexpectedly high prevalence of coronavirus among the domestic and wild free-roaming animals tested on mink farms. These results raise the possibility that mink farms could be potential hot spots for future trans-species viral spillover and the emergence of new pandemic coronaviruses.


Assuntos
Alphacoronavirus/isolamento & purificação , COVID-19/epidemiologia , COVID-19/veterinária , SARS-CoV-2/isolamento & purificação , Alphacoronavirus/classificação , Alphacoronavirus/genética , Animais , Animais Domésticos/virologia , Animais Selvagens/virologia , Gatos , Hotspot de Doença , Feminino , Masculino , Mephitidae/virologia , Camundongos , Vison/virologia , Guaxinins/virologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , Utah/epidemiologia
19.
Viruses ; 13(9)2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34578433

RESUMO

An outbreak caused by H7N3 low pathogenicity avian influenza virus (LPAIV) occurred in commercial turkey farms in the states of North Carolina (NC) and South Carolina (SC), United States in March of 2020. Subsequently, H7N3 high pathogenicity avian influenza virus (HPAIV) was detected on a turkey farm in SC. The infectivity, transmissibility, and pathogenicity of the H7N3 HPAIV and two LPAIV isolates, including one with a deletion in the neuraminidase (NA) protein stalk, were studied in turkeys and chickens. High infectivity [<2 log10 50% bird infectious dose (BID50)] and transmission to birds exposed by direct contact were observed with the HPAIV in turkeys. In contrast, the HPAIV dose to infect chickens was higher than for turkeys (3.7 log10 BID50), and no transmission was observed. Similarly, higher infectivity (<2-2.5 log10 BID50) and transmissibility were observed with the H7N3 LPAIVs in turkeys compared to chickens, which required higher virus doses to become infected (5.4-5.7 log10 BID50). The LPAIV with the NA stalk deletion was more infectious in turkeys but did not have enhanced infectivity in chickens. These results show clear differences in the pathobiology of AIVs in turkeys and chickens and corroborate the high susceptibility of turkeys to both LPAIV and HPAIV infections.


Assuntos
Galinhas/virologia , Vírus da Influenza A Subtipo H7N3/patogenicidade , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Perus/virologia , Animais , Surtos de Doenças/veterinária , Genoma Viral , Vírus da Influenza A Subtipo H7N3/genética , Vírus da Influenza A Subtipo H7N3/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , North Carolina/epidemiologia , Filogenia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/transmissão , South Carolina/epidemiologia , Carga Viral , Virulência , Eliminação de Partículas Virais
20.
Avian Dis ; 65(1): 59-62, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-34339123

RESUMO

Here, we report three detections of H7N1 low pathogenicity avian influenza viruses (LPAIV) from poultry in Missouri (n = 2) and Texas (n = 1) during February and March 2018. Complete genome sequencing and comparative phylogenetic analysis suggest that the H7 LPAIV precursor viruses were circulating in wild birds in North America during the fall and winter of 2017 and spilled over into domestic poultry in Texas and Missouri independently during the spring of 2018.


Nota de investigación­Virus de la influenza aviar de baja patogenicidad H7N1 en avicultura, Estados Unidos, 2018. En este artículo se reportan tres detecciones del virus de influenza aviar de baja patogenicidad H7N1 (LPAIV) en avicultura en Missouri (n = 2) y Texas (n = 1) durante febrero y marzo del 2018. La secuenciación completa del genoma y el análisis filogenético comparativo sugieren que precursores de este virus de influenza de baja patogenicidad H7 circulaban en aves silvestres en América del Norte durante el otoño y el invierno de 2017 y se propagaron a las aves comerciales en Texas y Missouri de forma independiente durante la primavera del 2018.


Assuntos
Galinhas , Vírus da Influenza A Subtipo H7N1/isolamento & purificação , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Perus , Animais , Vírus da Influenza A Subtipo H7N1/patogenicidade , Missouri , Texas , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...