Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 101(2-1): 022134, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168584

RESUMO

Random point patterns are ubiquitous in nature, and statistical models such as point processes, i.e., algorithms that generate stochastic collections of points, are commonly used to simulate and interpret them. We propose an application of quantum computing to statistical modeling by establishing a connection between point processes and Gaussian boson sampling, an algorithm for photonic quantum computers. We show that Gaussian boson sampling can be used to implement a class of point processes based on hard-to-compute matrix functions which, in general, are intractable to simulate classically. We also discuss situations where polynomial-time classical methods exist. This leads to a family of efficient quantum-inspired point processes, including a fast classical algorithm for permanental point processes. We investigate the statistical properties of point processes based on Gaussian boson sampling and reveal their defining property: like bosons that bunch together, they generate collections of points that form clusters. Finally, we analyze properties of these point processes for homogeneous and inhomogeneous state spaces, describe methods to control cluster location, and illustrate how to encode correlation matrices.

2.
Phys Rev Lett ; 122(4): 040504, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768345

RESUMO

A basic idea of quantum computing is surprisingly similar to that of kernel methods in machine learning, namely, to efficiently perform computations in an intractably large Hilbert space. In this Letter we explore some theoretical foundations of this link and show how it opens up a new avenue for the design of quantum machine learning algorithms. We interpret the process of encoding inputs in a quantum state as a nonlinear feature map that maps data to quantum Hilbert space. A quantum computer can now analyze the input data in this feature space. Based on this link, we discuss two approaches for building a quantum model for classification. In the first approach, the quantum device estimates inner products of quantum states to compute a classically intractable kernel. The kernel can be fed into any classical kernel method such as a support vector machine. In the second approach, we use a variational quantum circuit as a linear model that classifies data explicitly in Hilbert space. We illustrate these ideas with a feature map based on squeezing in a continuous-variable system, and visualize the working principle with two-dimensional minibenchmark datasets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA