Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 347: 113902, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699789

RESUMO

Immunometabolic changes have been shown to be a key factor in determining the immune cell response in disease models. The immunometabolite, itaconate, is produced by aconitate decarboxylase 1 (Acod1) and has been shown to inhibit inflammatory signaling in macrophages. In this study, we explore the role of Acod1 and itaconate in cerebral ischemia/reperfusion injury. We assessed the effect of global Acod1 knockout (Acod1KO, loss of endogenous itaconate) in a transient ischemia/reperfusion occlusion stroke model. Mice received a transient 90-min middle cerebral artery occlusion followed with 24-h of reperfusion. Stroke lesion volume was measured by MRI analysis and brain tissues were collected for mRNA gene expression analysis. Acod1KO mice showed significant increases in lesion volume compared to control mice, however no differences in pro-inflammatory mRNA levels were observed. Cell specific knockout of Acod1 in myeloid cells (LysM-Cre), microglia cells (CX3CR1, Cre-ERT2) and Endothelial cells (Cdh5(PAC), Cre-ERT2) did not reproduce lesion volume changes seen in global Acod1KO, indicating that circulating myeloid cells, resident microglia and endothelial cell populations are not the primary contributors to the observed phenotype. These effects however do not appear to be driven by changes in inflammatory gene regulation. These data suggests that endogenous Acod1 is protective in cerebral ischemia/reperfusion injury.


Assuntos
Isquemia Encefálica/enzimologia , Isquemia Encefálica/prevenção & controle , Carboxiliases/deficiência , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Isquemia Encefálica/genética , Carboxiliases/genética , Linhagem Celular , Fluxometria por Laser-Doppler/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão/genética
2.
Mol Cancer Ther ; 19(1): 89-100, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31909733

RESUMO

High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy in women worldwide and the fifth most common cause of cancer-related deaths among U.S. women. New therapies are needed to treat HGSOC, particularly because most patients develop resistance to current first-line therapies. Many natural product and fungal metabolites exhibit anticancer activity and represent an untapped reservoir of potential new agents with unique mechanism(s) of action. Verticillin A, an epipolythiodioxopiperazine alkaloid, is one such compound, and our recent advances in fermentation and isolation are now enabling evaluation of its anticancer activity. Verticillin A demonstrated cytotoxicity in HGSOC cell lines in a dose-dependent manner with a low nmol/L IC50 Furthermore, treatment with verticillin A induced DNA damage and caused apoptosis in HGSOC cell lines OVCAR4 and OVCAR8. RNA-Seq analysis of verticillin A-treated OVCAR8 cells revealed an enrichment of transcripts in the apoptosis signaling and the oxidative stress response pathways. Mass spectrometry histone profiling confirmed reports that verticillin A caused epigenetic modifications with global changes in histone methylation and acetylation marks. To facilitate in vivo delivery of verticillin A and to monitor its ability to reduce HGSOC tumor burden, verticillin A was encapsulated into an expansile nanoparticle (verticillin A-eNP) delivery system. In an in vivo human ovarian cancer xenograft model, verticillin A-eNPs decreased tumor growth and exhibited reduced liver toxicity compared with verticillin A administered alone. This study confirmed that verticillin A has therapeutic potential for treatment of HGSOC and that encapsulation into expansile nanoparticles reduced liver toxicity.


Assuntos
Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Dano ao DNA/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Animais , Apoptose , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/patologia , Feminino , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Camundongos , Camundongos Nus , Neoplasias Ovarianas/patologia , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...