Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 10(11)2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29113128

RESUMO

Al2O3-coated Li(Ni0.6Co0.2Mn0.2)O2 cathode materials were prepared by simple surface modification in water media through a sol-gel process with a dispersant. The crystallinity and surface morphology of the samples were characterized through X-ray diffraction analysis and scanning electron microscopy observation. The Li(Ni0.6Co0.2Mn0.2)O2 cathode material was of a polycrystalline hexagonal structure and agglomerated with particles of approximately 0.3 to 0.8 µm in diameter. The nanosized Al2O3 particles of low concentration (0.06-0.12 wt %) were uniformly coated on the surface of Li(Ni0.6Co0.2Mn0.2)O2. Measurement of electrochemical properties showed that Li(Ni0.6Co0.2Mn0.2)O2 coated with Al2O3 of 0.08 wt % had a high initial discharge capacity of 206.9 mAh/g at a rate of 0.05 C over 3.0-4.5 V and high capacity retention of 94.5% at 0.5 C after 30 cycles (cf. uncoated sample: 206.1 mAh/g and 90.8%, respectively). The rate capability of this material was also improved, i.e., it showed a high discharge capacity of 166.3 mAh/g after 5 cycles at a rate of 2 C, whereas the uncoated sample showed 155.8 mAh/g under the same experimental conditions.

2.
J Nanosci Nanotechnol ; 12(5): 4168-72, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22852365

RESUMO

An acetylene polymer is formed on single-walled carbon nanotubes (SWNTs) using in situ polymerization. The acetylene polymers/SWNTs composite is hydrophilic even water-soluble, and has a structure of donor/acceptor dyad. In measurements of photocurrents-voltage curves, the composite film exhibits a power conversion efficiency of 1.50 x 10(-2%) under illumination (I = 80 mW/cm2, air mass 1.5 condition).

3.
AAPS PharmSciTech ; 12(2): 764-70, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21671200

RESUMO

The reliable in-line monitoring of pharmaceutical processes has been regarded as a key tool toward the full implementation of process analytical technology. In this study, near-infrared (NIR) spectroscopy was examined for use as an in-line monitoring method of the paracetamol cooling crystallization process. The drug powder was dissolved in ethanol-based cosolvent at 60°C and was cooled by 1°C/min for crystallization. NIR spectra acquired by in-line measurement were interpreted by principal component analysis combined with off-line characterizations via X-ray diffraction, optical microscopy, and transmission electron microscopy. The whole crystallization process appeared to take place in three steps. A metastable form II polymorph of paracetamol was formed and transformed into the stable form I polymorph on the way to the growth of pure form I by cooling crystallization. These observations are consistent with a previous focused beam reflectance method-based study (Barthe et al., Cryst Growth Des 8:3316-3322, 2008).


Assuntos
Acetaminofen/química , Temperatura Baixa , Cristalização/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Acetaminofen/normas , Cristalização/normas , Reprodutibilidade dos Testes , Espectroscopia de Luz Próxima ao Infravermelho/normas , Difração de Raios X/métodos , Difração de Raios X/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...