Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Microb Pathog ; : 106797, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029597

RESUMO

Candida auris, an emerging multidrug-resistant fungal pathogen discovered in Japan in 2009, poses a significant global health threat, with infections reported in about 25 countries. The escalation of drug-resistant strains underscores the urgent need for new treatment options. This study aimed to investigate the antifungal potential of 2,3,4,4a-tetrahydro-1H-xanthen-1-one (XA1) against C. auris, as well as its mechanism of action and toxic profile. The antifungal activity of XA1 was first evaluated by determining the minimum inhibitory concentration (MIC), time-kill kinetics and biofilm inhibition. In addition, structural changes, membrane permeability, reactive oxygen species (ROS) production, and in vitro and in vivo toxicity of C. auris after exposure to XA1 were investigated. The results indicated that XA1 exhibited an MIC of 50 µg/mL against C. auris, with time-kill kinetics highlighting its efficacy. Field emission scanning electron microscopy (FE-SEM) showed structural damage in XA1-treated cells, supported by increased membrane permeability leading to cell death. Furthermore, XA1 induced ROS production and significantly inhibited biofilm formation. Importantly, XA1 exhibited low cytotoxicity in human epidermal keratinocytes (HaCaT), with a cell viability of over 90% at 6.25 µg/mL. In addition, an LD50 of 17.68 µg/mL was determined in zebrafish embryos 24 hours post fertilization (hpf), with developmental delay observed at prolonged exposure at 6.25 µg/mL (48-96 hpf). These findings position XA1 as a promising candidate for further research and development of an effective antifungal agent.

2.
Materials (Basel) ; 17(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38998336

RESUMO

This study investigates the feasibility of utilizing the finite element method (FEM)-based conductive heat transfer (CHT) analysis simulation to determine temperature gradients and solidification rates at the solid-liquid interface during laser beam oscillation welding. By comparing experimental observations with FEM-based CHT analysis, the underlying microstructural evolution and grain formation during welding were examined. FEM-based CHT enables the calculation of temperature gradients (G) and solidification rates (R), offering insights into the formation of equiaxed structures, which are crucial for suppressing hot cracking. Columnar-to-equiaxed structure transition thresholds, such as G/R and G3/R, accurately predict the emergence of fully equiaxed grain structures, validated by electron backscatter diffraction. This research provides valuable insights into temperature gradients and solidification rates in oscillation welding, guiding process design for achieving refined equiaxed structures and minimizing hot cracks.

3.
Chemistry ; : e202401733, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934891

RESUMO

In several biological processes, H2S is known to function as an endogenous gaseous agent. It is very necessary to monitor H2S and relevant physiological processes in vivo. Herein, a new type of fluorophore with a reliable leaving group allows for excited-state intramolecular transfer characteristics (ESIPT), inspired by mycophenolic acid. A morpholine ring was connected at the maleimide position to target the lysosome. Subsequently, the dinitrophenyl group known for a photoinduced electron transfer (PET) effect, was connected to allow for an effective "turn-on" probe Lyso-H2S. Lyso-H2S demonstrated strong selectivity towards H2S, large Stokes shift (111 nm), and an incredibly low detection limit (41.8 nM). The imaging of endogenous and exogenous H2S in living cells (A549 cell line) was successfully achieved because of the specificity and ultra-low toxicity (100 % cell viability at 50 µM concentration of Lyso-H2S.) Additionally, Lyso-H2S was also employed to visualize the activity of H2S in the gallbladder and intestine in a living zebrafish model. This is the first report of a fluorescent probe to track H2S sensing in specific organ systems to our knowledge.

4.
bioRxiv ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38826421

RESUMO

Monogenic syndromes are associated with neurodevelopmental changes that result in cognitive impairments, neurobehavioral phenotypes including autism and attention deficit hyperactivity disorder (ADHD), and seizures. Limited studies and resources are available to make meaningful headway into the underlying molecular mechanisms that result in these symptoms. One such example is DeSanto-Shinawi Syndrome (DESSH), a rare disorder caused by pathogenic variants in the WAC gene. Individuals with DESSH syndrome exhibit a recognizable craniofacial gestalt, developmental delay/intellectual disability, neurobehavioral symptoms that include autism, ADHD, behavioral difficulties and seizures. However, no thorough studies from a vertebrate model exist to understand how these changes occur. To overcome this, we developed both murine and zebrafish Wac/wac deletion mutants and studied whether their phenotypes recapitulate those described in individuals with DESSH syndrome. We show that the two Wac models exhibit craniofacial and behavioral changes, reminiscent of abnormalities found in DESSH syndrome. In addition, each model revealed impacts to GABAergic neurons and further studies showed that the mouse mutants are susceptible to seizures, changes in brain volumes that are different between sexes and relevant behaviors. Finally, we uncovered transcriptional impacts of Wac loss of function that will pave the way for future molecular studies into DESSH. These studies begin to uncover some biological underpinnings of DESSH syndrome and elucidate the biology of Wac, with advantages in each model.

5.
Materials (Basel) ; 17(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38793525

RESUMO

The significance of rheology in the context of bio three-dimensional (3D) printing lies in its impact on the printing behavior, which shapes material flow and the layer-by-layer stacking process. The objective of this study is to evaluate the rheological and printing behaviors of polycaprolactone (PCL) and dimethyl sulfone (DMSO2) composites. The rheological properties were examined using a rotational rheometer, employing a frequency sweep test. Simultaneously, the printing behavior was investigated using a material extrusion 3D printer, encompassing varying printing temperatures and pressures. Across the temperature range of 120-140 °C, both PCL and PCL/DMSO2 composites demonstrated liquid-like behavior, with a higher loss modulus than storage modulus. This behavior exhibited shear-thinning characteristics. The addition of DMSO2 10, 20, and 30 wt% into the PCL matrix reduced a zero-shear viscosity of 33, 46, and 74% compared to PCL, respectively. The materials exhibited extrusion velocities spanning from 0.0850 to 6.58 mm/s, with velocity being governed by the reciprocal of viscosity. A significant alteration in viscosity by temperature change directly led to a pronounced fluctuation in extrusion velocity. Extrusion velocities below 0.21 mm/s led to the production of unstable printed lines. The presence of distinct viscosities altered extrusion velocity, flow rate, and strut diameter. This phenomenon allowed the categorization of pore shape into three zones: irregular, normal, and no-pore zones. It underscored the importance of comprehending the rheological aspects of biomaterials in enhancing the overall quality of bio-scaffolds during the 3D printing process.

6.
Zebrafish ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748396

RESUMO

Various methods have been used in rodents to evaluate learning and memory. Although much less frequently used, the zebrafish emerges as an alternative model organism in this context. For example, it allows assessing potential behavioral deficits because of neurodevelopmental disorders or environmental neurotoxins. A variety of learning tasks have been employed in previous studies that required extensive habituation and training sessions. Here, we introduce a simpler and faster method to evaluate learning and memory of zebrafish with minimum habituation. A new apparatus, a transparent L-shaped tube, was developed in which we trained each zebrafish to swim through a long arm and measured the time to swim through this arm. We demonstrate that in this task, zebrafish could acquire both short-term (1 h) and long-term memory (4 days). We also studied learning and memory of a gene knockout (KO) zebrafish that showed social impairments related to autism. We found KO mutant zebrafish to show a quantitative impairment in habituation, learning, and memory performance compared with wild-type control fish. In conclusion, we established a novel learning apparatus and sensitive paradigm that allowed us to evaluate learning and memory of adult zebrafish that required only a brief habituation period and minimal training.

7.
Heliyon ; 10(5): e27462, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495201

RESUMO

Malaria remains a major public health problem worldwide, including in Southeast Asia. Chemotherapeutic agents such as chloroquine (CQ) are effective, but problems with drug resistance and toxicity have necessitated a continuous search for new effective antimalarial agents. Here we report on a virtual screening of ∼300 diarylpentanoids and derivatives, in search of potential Plasmodium falciparum lactate dehydrogenase (PfLDH) inhibitors with acceptable drug-like properties. Several molecules with binding affinities comparable to CQ were chosen for in vitro validation of antimalarial efficacy. Among them, MS33A, MS33C and MS34C are the most promising against CQ-sensitive (3D7) with EC50 values of 1.6, 2.5 and 3.1 µM, respectively. Meanwhile, MS87 (EC50 of 1.85 µM) shown the most active against the CQ-resistant Gombak A strain, and MS33A and MS33C the most effective P. knowlesi inhibitors (EC50 of 3.6 and 5.1 µM, respectively). The in vitro cytotoxicity of selected diarylpentanoids (MS33A, MS33C, MS34C and MS87) was tested on Vero mammalian cells to evaluate parasite selectivity (SI), showing moderate to low cytotoxicity (CC50 > 82 µM). In addition, MS87 exhibited a high SI and the lowest resistance index (RI), suggesting that MS87 may exert effective parasite inhibition with low resistance potential in the CQ-resistant P. falciparum strain. Furthermore, the in vivo toxicity of the molecules on early embryonic development, the cardiovascular system, heart rate, motor activity and apoptosis were assessed in a zebrafish animal model. The overall results indicate the preliminary potential of diarylpentanoids, which need further investigation for their development as new antimalarial agents.

8.
Transl Psychiatry ; 14(1): 82, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331943

RESUMO

Genetic variants in ZNF536 contribute to the risk for neuropsychiatric disorders such as schizophrenia, autism, and others. The role of this putative transcriptional repressor in brain development and function is, however, largely unknown. We generated znf536 knockout (KO) zebrafish and studied their behavior, brain anatomy, and brain function. Larval KO zebrafish showed a reduced ability to compete for food, resulting in decreased total body length and size. This phenotype can be rescued by segregating the homozygous KO larvae from their wild-type and heterozygous siblings, enabling studies of adult homozygous KO animals. In adult KO zebrafish, we observed significant reductions in anxiety-like behavior and social interaction. These znf536 KO zebrafish have decreased cerebellar volume, corresponding to decreased populations of specific neuronal cells, especially in the valvular cerebelli (Va). Finally, using a Tg[mbp:mgfp] line, we identified a previously undetected myelin structure located bilaterally within the Va, which also displayed a reduction in volume and disorganization in KO zebrafish. These findings indicate an important role for ZNF536 in brain development and implicate the cerebellum in the pathophysiology of neuropsychiatric disorders.


Assuntos
Cerebelo , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais Geneticamente Modificados/metabolismo , Cerebelo/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Encéfalo/metabolismo
9.
Talanta ; 269: 125459, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38011812

RESUMO

Fluorescent probes play essential roles in medical imaging, where the researchers can select one of many molecules to use to help monitor the status of living systems under investigation. To date, a few scaffolds that allow the in vivo detection of H2O2 are available only. Herein, we provide a highly sensitive and selective near-infrared fluorescent probe that detects H2O2 based on the ICT sensing mechanism. We report the first indole-incorporated fluorescent probe Indo-H2O2 that allows H2O2 detection with a LOD of 25.2 nM featuring a boronate group conjugated to an indole scaffold; the boronate cleaves upon reaction with H2O2. A 5-membered malononitrile derivative was incorporated; Indo-H2O2 has near-infrared (NIR) properties and the reaction time is low (∼25 min) compared to other related probes. Indo-H2O2 was successfully employed in both endogenous and exogenous imaging trials of H2O2 in living cells. Indo-H2O2 also allows the real-time monitoring of H2O2in vivo. It preferentially accesses the gallbladder of zebrafish. Our findings support Indo-H2O2 as a highly sensitive fluorescent NIR probe for detecting H2O2, and an idea to incorporate a central indole unit in future fluorescent probe designs.


Assuntos
Corantes Fluorescentes , Peixe-Zebra , Humanos , Animais , Células HeLa , Peróxido de Hidrogênio , Vesícula Biliar/diagnóstico por imagem , Imagem Óptica/métodos , Indóis
10.
Mar Drugs ; 21(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38132928

RESUMO

The discovery of new highly effective anticancer drugs with few side effects is a challenge for drug development research. Natural or synthetic anticancer peptides (ACPs) represent a new generation of anticancer agents with high selectivity and specificity. The rapid emergence of chemoradiation-resistant lung cancer has necessitated the discovery of novel anticancer agents as alternatives to conventional therapeutics. In this study, we synthesized a peptide containing 22 amino acids and characterized it as a novel ACP (MP06) derived from green sea algae, Bryopsis plumosa. Using the ACP database, MP06 was predicted to possess an alpha-helical secondary structure and functionality. The anti-proliferative and apoptotic effects of the MP06, determined using the cytotoxicity assay and Annexin V/propidium iodide staining kit, were significantly higher in non-small-cell lung cancer (NSCLC) cells than in non-cancerous lung cells. We confirmed that MP06 suppressed cellular migration and invasion and inhibited the expression of N-cadherin and vimentin, the markers of epithelial-mesenchymal transition. Moreover, MP06 effectively reduced the metastasis of tumor xenografts in zebrafish embryos. In conclusion, we suggest considering MP06 as a novel candidate for the development of new anticancer drugs functioning via the ERK signaling pathway.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Peixe-Zebra , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
11.
Commun Biol ; 6(1): 1214, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030679

RESUMO

The N-end rule pathway is a proteolytic system involving the destabilization of N-terminal amino acids, known as N-degrons, which are recognized by N-recognins. Dysregulation of the N-end rule pathway results in the accumulation of undesired proteins, causing various diseases. The E3 ligases of the UBR subfamily recognize and degrade N-degrons through the ubiquitin-proteasome system. Herein, we investigated UBR4, which has a distinct mechanism for recognizing type-2 N-degrons. Structural analysis revealed that the UBR box of UBR4 differs from other UBR boxes in the N-degron binding sites. It recognizes type-2 N-terminal amino acids containing an aromatic ring and type-1 N-terminal arginine through two phenylalanines on its hydrophobic surface. We also characterized the binding mechanism for the second ligand residue. This is the report on the structural basis underlying the recognition of type-2 N-degrons by the UBR box with implications for understanding the N-end rule pathway.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Ubiquitina-Proteína Ligases/metabolismo , Proteólise , Ubiquitina/metabolismo , Ligação Proteica , Aminoácidos/metabolismo
12.
Chemosphere ; 341: 140099, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690556

RESUMO

Bifenthrin, a third-generation synthetic pyrethroid, is widely used as an agricultural insecticide. However, it can flow into surface and groundwater, leading to adverse consequences such as immunotoxicity, hepatotoxicity, hormone dysregulation, or neurotoxicity. Nevertheless, the entire range of its neurotoxic consequences, particularly in aquatic organisms, remains unclear. In this study, we conducted an extensive examination of how exposure to bifenthrin affects the behavior and nervous system function of aquatic vertebrates, using a zebrafish model and multiple-layered assays. We exposed wild-type and transgenic lines [tg(elavl3:eGFP) and tg(mbp:mGFP)] to bifenthrin from <3 h post-fertilization (hpf) to 120 hpf. Our findings indicate that bifenthrin exposure concentrations of 103.9 and 362.1 µg/L significantly affects the tail-coiling response at 24 hpf and the touch-evoked responses at 72 hpf. Moreover, it has a significant effect on various aspects of behavior such as body contact, distance between subjects, distance moved, and turn angle. We attribute these effects to changes in acetylcholinesterase and dopamine levels, which decrease in a concentration-dependent manner. Furthermore, neuroimaging revealed neurogenesis defects, e.g., shortened brain and axon widths, and demyelination of oligodendrocytes and Schwann cells. Additionally, the transcription of genes related to neurodevelopment (e.g., gap43, manf, gfap, nestin, sox2) were significantly upregulated and neurotransmitters (e.g., nlgn1, drd1, slc6a4a, ache) was significantly downregulated. In summary, our data shows that bifenthrin exposure has detrimental effects on neurodevelopmental and neurotransmission systems in the zebrafish embryo/larvae model.


Assuntos
Piretrinas , Poluentes Químicos da Água , Animais , Humanos , Peixe-Zebra/fisiologia , Larva , Acetilcolinesterase , Piretrinas/toxicidade , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade
13.
Nat Methods ; 20(10): 1581-1592, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37723246

RESUMO

Here we report SUPPORT (statistically unbiased prediction utilizing spatiotemporal information in imaging data), a self-supervised learning method for removing Poisson-Gaussian noise in voltage imaging data. SUPPORT is based on the insight that a pixel value in voltage imaging data is highly dependent on its spatiotemporal neighboring pixels, even when its temporally adjacent frames alone do not provide useful information for statistical prediction. Such dependency is captured and used by a convolutional neural network with a spatiotemporal blind spot to accurately denoise voltage imaging data in which the existence of the action potential in a time frame cannot be inferred by the information in other frames. Through simulations and experiments, we show that SUPPORT enables precise denoising of voltage imaging data and other types of microscopy image while preserving the underlying dynamics within the scene.


Assuntos
Microscopia , Redes Neurais de Computação , Razão Sinal-Ruído , Distribuição Normal , Processamento de Imagem Assistida por Computador/métodos
14.
Analyst ; 148(20): 5203-5209, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37721488

RESUMO

Excessive production of potent biological oxidants such as HOCl has been implicated in numerous diseases. Thus, it is crucial to develop highly specific and precise methods to detect HOCl in living systems, preferably with molecules that can show a distinct therapeutic effect. Our study introduces the synthesis and application of a highly sensitive fluorescence "turn-on" probe, Myco-OCl, based on the mycophenolic acid scaffold with exceptional water solubility. The ESIPT-driven mechanism enables Myco-OCl to specifically and rapidly detect (<5 s) HOCl with an impressive Stokes shift of 105 nm (λex = 417 nm, λem = 522 nm) and a sub-nanomolar (97.3 nM) detection limit with the detection range of 0 to 50 µM. The potential of Myco-OCl as an excellent biosensor is evident from its successful application for live cell imaging of exogenous and endogenous HOCl. In addition, Myco-OCl enabled us to detect HOCl in a zebrafish inflammatory animal model. These underscore the great potential of Myco-OCl for detecting HOCl in diverse physiological systems. Our findings thus offer a highly promising tool for detecting HOCl in living organisms.

15.
Sci Rep ; 13(1): 12984, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563198

RESUMO

In a patient diagnosed with both Kallmann syndrome (KS) and intellectual disability (ID), who carried an apparently balanced translocation t(7;12)(q22;q24)dn, array comparative genomic hybridization (aCGH) disclosed a cryptic heterozygous 4.7 Mb deletion del(12)(p11.21p11.23), unrelated to the translocation breakpoint. This novel discovery prompted us to consider the possibility that the combination of KS and neurological disorder in this patient could be attributed to gene(s) within this specific deletion at 12p11.21-12p11.23, rather than disrupted or dysregulated genes at the translocation breakpoints. To further support this hypothesis, we expanded our study by screening five candidate genes at both breakpoints of the chromosomal translocation in a cohort of 48 KS patients. However, no mutations were found, thus reinforcing our supposition. In order to delve deeper into the characterization of the 12p11.21-12p11.23 region, we enlisted six additional patients with small copy number variations (CNVs) and analyzed eight individuals carrying small CNVs in this region from the DECIPHER database. Our investigation utilized a combination of complementary approaches. Firstly, we conducted a comprehensive phenotypic-genotypic comparison of reported CNV cases. Additionally, we reviewed knockout animal models that exhibit phenotypic similarities to human conditions. Moreover, we analyzed reported variants in candidate genes and explored their association with corresponding phenotypes. Lastly, we examined the interacting genes associated with these phenotypes to gain further insights. As a result, we identified a dozen candidate genes: TSPAN11 as a potential KS candidate gene, TM7SF3, STK38L, ARNTL2, ERGIC2, TMTC1, DENND5B, and ETFBKMT as candidate genes for the neurodevelopmental disorder, and INTS13, REP15, PPFIBP1, and FAR2 as candidate genes for KS with ID. Notably, the high-level expression pattern of these genes in relevant human tissues further supported their candidacy. Based on our findings, we propose that dosage alterations of these candidate genes may contribute to sexual and/or cognitive impairments observed in patients with KS and/or ID. However, the confirmation of their causal roles necessitates further identification of point mutations in these candidate genes through next-generation sequencing.


Assuntos
Deficiência Intelectual , Síndrome de Kallmann , Humanos , Proteínas de Transporte/genética , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Deficiência Intelectual/genética , Síndrome de Kallmann/genética , Proteínas de Membrana/genética , Tetraspaninas/genética , Translocação Genética
17.
Sci Total Environ ; 894: 164920, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37331392

RESUMO

The Weather Research and Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model, implemented with anthropogenic chlorine (Cl) emissions, was evaluated against ground and NASA DC-8 aircraft measurements during the Korea-United States Air Quality (KORUS-AQ) 2016 campaign. The latest anthropogenic Cl emissions, including gaseous HCl and particulate chloride (pCl-) emissions from the Anthropogenic Chlorine Emissions Inventory of China (ACEIC-2014) (over China) and a global emissions inventory (Zhang et al., 2022) (over outer China), were used to examine the impacts of Cl emissions and the role of nitryl chloride (ClNO2) chemistry in N2O5 heterogeneous reactions on secondary nitrate (NO3-) formation across the Korean Peninsula. The model results against aircraft measurements clearly showed significant Cl- underestimations due mainly to the high gas-particle (G/P) partitioning ratios at aircraft measurement altitudes such as 700-850 hPa, but the ClNO2 simulations were reasonable. Several simulations of CMAQ-based sensitivity experiments against ground measurements indicated that although addition of Cl emission did not significantly alter NO3- formation, the activated ClNO2 chemistry with Cl emissions showed the best model performance with the reduced normalized mean bias (NMB) of 18.7 % compared to a value of 21.1 % for the Cl emissions-free case. In our model evaluation, ClNO2 accumulated during the night but quickly produced Cl radical due to ClNO2 photolysis at sunrise, which modulated other oxidation radicals (e.g., ozone [O3] and hydrogen oxide radicals [HOx]) in the early morning. In the morning hours (0800-1000 LST), the HOx were the dominant oxidants, contributing 86.6 % of the total oxidation capacity (sum of major oxidants such as O3 and HOx species), while oxidability was enhanced by up to ∼6.4 % (increase in 1 h HOx average of 2.89 × 106 molecules·cm-3) in the early morning mainly due to the changes in OH (+7.2 %), hydroperoxyl radical (HO2)(+10.0 %), and O3 (+4.2 %) over the Seoul Metropolitan Area, during the KORUS-AQ campaign. Our results improve understanding of the atmospheric changes in the PM2.5 formation pathway caused by ClNO2 chemistry and Cl emissions over northeast Asia.

18.
Front Cell Dev Biol ; 11: 1200599, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363725

RESUMO

Ciliopathies are human genetic disorders caused by abnormal formation and dysfunction of cellular cilia. Cilia are microtubule-based organelles that project into the extracellular space and transduce molecular and chemical signals from the extracellular environment or neighboring cells. Intraflagellar transport (IFT) proteins are required for the assembly and maintenance of cilia by transporting proteins along the axoneme which consists of complexes A and B. IFT46, a core IFT-B protein complex, is required for cilium formation and maintenance during vertebrate embryonic development. Here, we introduce transgenic zebrafish lines under the control of ciliated cell-specific IFT46 promoter to recapitulate human ciliopathy-like phenotypes. We generated a Tg(IFT46:GAL4-VP16) line to temporo-spatially control the expression of effectors including fluorescent reporters or nitroreductase based on the GAL4/UAS system, which expresses GAL4-VP16 chimeric transcription factors in most ciliated tissues during embryonic development. To analyze the function of IFT46-expressing ciliated cells during zebrafish development, we generated the Tg(IFT46:GAL4-VP16;UAS;nfsb-mCherry) line, a ciliated cell-specific injury model induced by nitroreductase (NTR)/metrodinazole (MTZ). Conditionally, controlled ablation of ciliated cells in transgenic animals exhibited ciliopathy-like phenotypes including cystic kidneys and pericardial and periorbital edema. Altogether, we established a zebrafish NTR/MTZ-mediated ciliated cell injury model that recapitulates ciliopathy-like phenotypes and may be a vertebrate animal model to further investigate the etiology and therapeutic approaches to human ciliopathies.

19.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175875

RESUMO

Our understanding of fundamental biological mechanisms and the pathogenesis of human diseases has been greatly improved by studying the genetics and genomics of zebrafish [...].


Assuntos
Genômica , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética
20.
J Vis Exp ; (194)2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37184275

RESUMO

As a vertebrate model animal, larval zebrafish are widely used in neuroscience and provide a unique opportunity to monitor whole-brain activity at the cellular resolution. Here, we provide an optimized protocol for performing whole-brain imaging of larval zebrafish using three-dimensional fluorescence microscopy, including sample preparation and immobilization, sample embedding, image acquisition, and visualization after imaging. The current protocol enables in vivo imaging of the structure and neuronal activity of a larval zebrafish brain at a cellular resolution for over 1 h using confocal microscopy and custom-designed fluorescence microscopy. The critical steps in the protocol are also discussed, including sample mounting and positioning, preventing bubble formation and dust in the agarose gel, and avoiding motion in images caused by incomplete solidification of the agarose gel and paralyzation of the fish. The protocol has been validated and confirmed in multiple settings. This protocol can be easily adapted for imaging other organs of a larval zebrafish.


Assuntos
Encéfalo , Imageamento Tridimensional , Microscopia Intravital , Microscopia de Fluorescência , Neuroimagem , Peixe-Zebra , Animais , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Neuroimagem/instrumentação , Neuroimagem/métodos , Sefarose , Microscopia Intravital/instrumentação , Microscopia Intravital/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...