Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 598(10): 2021-2034, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32026480

RESUMO

KEY POINTS: We hypothesized that hypoxia inducible factor 1α (HIF-1α) in CNS respiratory centres is necessary for ventilatory acclimatization to hypoxia (VAH); VAH is a time-dependent increase in baseline ventilation and the hypoxic ventilatory response (HVR) occurring over days to weeks of chronic sustained hypoxia (CH). Constitutive deletion of HIF-1α in CNS neurons in transgenic mice tended to blunt the increase in HVR that occurs in wild-type mice with CH. Conditional deletion of HIF-1α in glutamatergic neurons of the nucleus tractus solitarius during CH significantly decreased ventilation in acute hypoxia but not normoxia in CH mice. These effects are not explained by changes in metabolic rate, nor CO2 , and there were no changes in the HVR in normoxic mice. HIF-1α mediated changes in gene expression in CNS respiratory centres are necessary in addition to plasticity of arterial chemoreceptors for normal VAH. ABSTRACT: Chronic hypoxia (CH) produces a time-dependent increase of resting ventilation and the hypoxic ventilatory response (HVR) that is called ventilatory acclimatization to hypoxia (VAH). VAH involves plasticity in arterial chemoreceptors and the CNS [e.g. nucleus tractus solitarius (NTS)], although the signals for this plasticity are not known. We hypothesized that hypoxia inducible factor 1α (HIF-1α), an O2 -sensitive transcription factor, is necessary in the NTS for normal VAH. We tested this in two mouse models using loxP-Cre gene deletion. First, HIF-1α was constitutively deleted in CNS neurons (CNS-HIF-1α-/- ) by breeding HIF-1α floxed mice with mice expressing Cre-recombinase driven by the calcium/calmodulin-dependent protein kinase IIα promoter. Second, HIF-1α was deleted in NTS neurons in adult mice (NTS-HIF-1α-/- ) by microinjecting adeno-associated virus that expressed Cre-recombinase in HIF-1α floxed mice. In normoxic control mice, HIF-1α deletion in the CNS or NTS did not affect ventilation, nor the acute HVR (10-15 min hypoxic exposure). In mice acclimatized to CH for 1 week, ventilation in hypoxia was blunted in CNS-HIF-1α-/- and significantly decreased in NTS-HIF-1α-/- compared to control mice (P < 0.0001). These changes were not explained by differences in metabolic rate or CO2 . Immunofluorescence showed that HIF-1α deletion in NTS-HIF-1α-/- was restricted to glutamatergic neurons. The results indicate that HIF-1α is a necessary signal for VAH and the previously described plasticity in glutamatergic neurotransmission in the NTS with CH. HIF-1α deletion had no effect on the increase in normoxic ventilation with acclimatization to CH, indicating this is a distinct mechanism from the increased HVR with VAH.


Assuntos
Hipóxia , Núcleo Solitário , Aclimatação , Animais , Camundongos , Neurônios , Centro Respiratório
2.
Brain Res ; 1443: 75-88, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22297172

RESUMO

Mutations in the presenilin 1 (PS1) gene lead to early-onset Alzheimer's disease with the S170F mutation causing the earliest reported age of onset. Expression of this, and other PS1 mutations, in SH-SY5Y cells resulted in significant loss of cellular viability compared to control cells. Basal Ca2+ concentrations in PS1 mutants were never lower than controls and prolonged incubation in Ca2+ -free solutions did not deplete Ca2+ stores, demonstrating there was no difference in Ca2+ leak from endoplasmic reticulum (ER) stores in PS1 mutants. Peak muscarine-evoked rises of [Ca2+]i were variable, but the integrals were not significantly different, suggesting, while kinetics of Ca2+ store release might be affected in PS1 mutants, store size was similar. However, when Ca2+ -ATPase activity was irreversibly inhibited with thapsigargin, the S170F and ΔE9 cells showed larger capacitative calcium entry indicating a direct effect on Ca2+ influx pathways. There was no significant effect of any of the mutations on mitochondrial respiration. Amyloid ß(Aß(1-40)) secretion was reduced, and Aß(1-42) secretion increased in the S170F cells resulting in a very large increase in the Aß42/40 ratio. This, rather than any potential disruption of ER Ca2+ stores, is likely to explain the extreme pathology of this mutant.


Assuntos
Sobrevivência Celular , Mutação , Presenilina-1/genética , Presenilina-1/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Humanos , Mitocôndrias/metabolismo
3.
Integr Comp Biol ; 47(4): 532-51, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21672862

RESUMO

Aerobic organisms maintain O(2) homeostasis by responding to changes in O(2) supply and demand in both short and long time domains. In this review, we introduce several specific examples of respiratory plasticity induced by chronic changes in O(2) supply (environmental hypoxia or hyperoxia) and demand (exercise-induced and temperature-induced changes in aerobic metabolism). These studies reveal that plasticity occurs throughout the respiratory system, including modifications to the gas exchanger, respiratory pigments, respiratory muscles, and the neural control systems responsible for ventilating the gas exchanger. While some of these responses appear appropriate (e.g., increases in lung surface area, blood O(2) capacity, and pulmonary ventilation in hypoxia), other responses are potentially harmful (e.g., increased muscle fatigability). Thus, it may be difficult to predict whole-animal performance based on the plasticity of a single system. Moreover, plastic responses may differ quantitatively and qualitatively at different developmental stages. Much of the current research in this field is focused on identifying the cellular and molecular mechanisms underlying respiratory plasticity. These studies suggest that a few key molecules, such as hypoxia inducible factor (HIF) and erythropoietin, may be involved in the expression of diverse forms of plasticity within and across species. Studying the various ways in which animals respond to respiratory challenges will enable a better understanding of the integrative response to chronic changes in O(2) supply and demand.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...