Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurooncol ; 153(1): 43-53, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33864561

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common and malignant gliomas of adults and recur, resulting in death, despite surgery, radiotherapy, and temozolomide-based chemotherapy. There are a few reports on immunotherapy for the mismatch repair (MMR)-deficient GBMs with high tumor mutational burden (TMB). However, the clinicopathological and genetic features of the MMR genes altered in GBMs have not been elucidated yet. METHODS: The authors analyzed targeted next-generation sequencing (NGS) data from 282 (276 primary and 6 recurrent) glioblastomas to evaluate the mutational status of six DNA repair-related genes: MLH1, MSH2, MSH6, PMS2, POLE, and POLD1. Tumors harboring somatic or germline mutations in one or more of these six genes were classified as an MMR gene-altered GBM. The clinicopathologic and molecular characteristics of MMR gene-altered GBMs were compared to those of tumors without MMR gene alterations. RESULTS: Sixty germline or somatic mutations were identified in 37 cases (35 primary and two recurrent) of GBM. The most frequently mutated genes were MSH6 and POLE. Single nucleotide variants were the most common, followed by frameshift deletions or insertions and approximately 60% of the mutations were germline mutations. Two patients who showed MSH2 (c.2038C > T) and MSH6 (c.1082G > A) mutations had familial colon cancer. The clinical findings were not different between the two groups. However, the presence of MGMT promoter methylation and high tumor mutation burden (TMB) values (> 20) were correlated with MMR gene alterations. CONCLUSION: Since MMR-related genes can be found even in primary glioblastoma and are correlated with high TMB and MGMT promoter methylation, MMR genes should be carefully analyzed in NGS study on glioblastomas.


Assuntos
Reparo de Erro de Pareamento de DNA , Glioblastoma , Reparo de Erro de Pareamento de DNA/genética , Glioblastoma/epidemiologia , Glioblastoma/genética , Humanos , Incidência , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Recidiva Local de Neoplasia
2.
Cancers (Basel) ; 12(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610572

RESUMO

Inactivation of phosphatase and tensin homolog (PTEN) is caused by multiple mechanisms, and loss of PTEN activity is related to the progression of various cancers. In gastric cancer (GC), the relationship between the loss of PTEN protein expression and various genetic alterations remains unclear. The effects of microsatellite instability (MSI), Epstein-Barr virus (EBV), HER2 overexpression, and PD-L1 expression on PTEN mutation have not been fully explored. We performed comprehensive cancer panel tests with a cohort of 322 tumor samples from patients with advanced GC. Immunohistochemistry for PTEN protein was performed in all cases, and the loss of protein expression was defined as a complete absence of nuclear staining. In total, 34 cases (10.6%) had pathogenic PTEN mutations, of which 19 (55.9%) showed PTEN protein loss. The most common PTEN variants associated with protein loss were p.R130 (n = 4) followed by p.R335, p.L265fs, and deletions (n = 2). All the ten nonsense mutations identified in the samples resulted in PTEN inactivation. In the remaining 288 GC cases with wild-type PTEN, protein loss was found in 35 cases (12.2%). Thus, PTEN mutations were significantly associated with PTEN protein loss (p = 5.232 × 10-10), high MSI (p = 3.936 × 10-8), and EBV-positivity (p = 0.0071). In conclusion, our results demonstrate that loss-of-function mutations in PTEN are a frequent genetic mechanism of PTEN inactivation in GC.

3.
PLoS Genet ; 11(8): e1005467, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26295973

RESUMO

The genetic landscape of medullary thyroid cancer (MTC) is not yet fully understood, although some oncogenic mutations have been identified. To explore genetic profiles of MTCs, formalin-fixed, paraffin-embedded tumor tissues from MTC patients were assayed on the Ion AmpliSeq Cancer Panel v2. Eighty-four sporadic MTC samples and 36 paired normal thyroid tissues were successfully sequenced. We discovered 101 hotspot mutations in 18 genes in the 84 MTC tissue samples. The most common mutation was in the ret proto-oncogene, which occurred in 47 cases followed by mutations in genes encoding Harvey rat sarcoma viral oncogene homolog (N = 14), serine/threonine kinase 11 (N = 11), v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (N = 6), mutL homolog 1 (N = 4), Kiesten rat sarcoma viral oncogene homolog (N = 3) and MET proto-oncogene (N = 3). We also evaluated anaplastic lymphoma kinase (ALK) rearrangement by immunohistochemistry and break-apart fluorescence in situ hybridization (FISH). Two of 98 screened cases were positive for ALK FISH. To identify the genomic breakpoint and 5' fusion partner of ALK, customized targeted cancer panel sequencing was performed using DNA from tumor samples of the two patients. Glutamine:fructose-6-phosphate transaminase 1 (GFPT1)-ALK and echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusions were identified. Additional PCR analysis, followed by Sanger sequencing, confirmed the GFPT1-ALK fusion, indicating that the fusion is a result of intra-chromosomal translocation or deletion. Notably, a metastatic MTC case harboring the EML4-ALK fusion showed a dramatic response to an ALK inhibitor, crizotinib. In conclusion, we found several genetic mutations in MTC and are the first to identify ALK fusions in MTC. Our results suggest that the EML4-ALK fusion in MTC may be a potential driver mutation and a valid target of ALK inhibitors. Furthermore, the GFPT1-ALK fusion may be a potential candidate for molecular target therapy.


Assuntos
Carcinoma Neuroendócrino/genética , Receptores Proteína Tirosina Quinases/genética , Neoplasias da Glândula Tireoide/genética , Adulto , Quinase do Linfoma Anaplásico , Sequência de Bases , Análise Mutacional de DNA , Feminino , Predisposição Genética para Doença , Genoma Humano , Estudo de Associação Genômica Ampla , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/genética , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-ret/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...