Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 22(1): 170-192, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34881385

RESUMO

The bulk flow of interstitial fluid through tissue is an important factor in human biology, including the development of brain microvascular networks (MVNs) with the blood-brain barrier (BBB). Bioengineering perfused, functional brain MVNs has great potential for modeling neurovascular diseases and drug delivery. However, most in vitro models of brain MVNs do not implement interstitial flow during the generation of microvessels. Using a microfluidic device (MFD), we cultured primary human brain endothelial cells (BECs), pericytes, and astrocytes within a 3D fibrin matrix with (flow) and without (static) interstitial flow. We found that the bulk flow of interstitial fluid was beneficial for both BEC angiogenesis and vasculogenesis. Brain MVNs cultured under flow conditions achieved anastomosis and were perfusable, whereas those under static conditions lacked connectivity and the ability to be perfused. Compared to static culture, microvessels developed in flow culture exhibited an enhanced vessel area, branch length and diameter, connectivity, and longevity. Although there was no change in pericyte coverage of microvessels, a slight increase in astrocyte coverage was observed under flow conditions. In addition, the immunofluorescence intensity of basal lamina proteins, collagen IV and laminin, was nearly doubled in flow culture. Lastly, the barrier function of brain microvessels was enhanced under flow conditions, as demonstrated by decreased dextran permeability. Taken together, these results highlighted the importance of interstitial flow in the in vitro generation of perfused brain MVNs with characteristics similar to those of the human BBB.


Assuntos
Células Endoteliais , Dispositivos Lab-On-A-Chip , Barreira Hematoencefálica , Encéfalo , Células Cultivadas , Humanos , Microvasos , Pericitos
2.
Elife ; 92020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32347797

RESUMO

During vertebrate retinal development, subsets of progenitor cells generate progeny in a non-stochastic manner, suggesting that these decisions are tightly regulated. However, the gene-regulatory network components that are functionally important in these progenitor cells are largely unknown. Here we identify a functional role for the OTX2 transcription factor in this process. CRISPR/Cas9 gene editing was used to produce somatic mutations of OTX2 in the chick retina and identified similar phenotypes to those observed in human patients. Single cell RNA sequencing was used to determine the functional consequences OTX2 gene editing on the population of cells derived from OTX2-expressing retinal progenitor cells. This confirmed that OTX2 is required for the generation of photoreceptors, but also for repression of specific retinal fates and alternative gene regulatory networks. These include specific subtypes of retinal ganglion and horizontal cells, suggesting that in this context, OTX2 functions to repress sister cell fate choices.


Assuntos
Fatores de Transcrição Otx/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Retina/embriologia , Animais , Sistemas CRISPR-Cas/genética , Galinhas , Feminino , Edição de Genes , Redes Reguladoras de Genes , Masculino , Mutação , Fatores de Transcrição Otx/genética , Fator de Transcrição PAX6/análise , Análise de Sequência de RNA , Análise de Célula Única
3.
J Mech Behav Biomed Mater ; 44: 173-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25658877

RESUMO

In this work, we investigated the effects of negative pressure, applied using a pump designed for Negative Pressure Wound Therapy (NPWT), on the process of wound healing in vitro via initiation of the Wnt signaling pathway. Results indicate that negative pressure enhanced Wnt signaling and migration into a simulated wound in vitro in NIH-3T3 murine fibroblast cells. Increasing doses of lithium (upto 15 mM) increased basal Wnt signaling and enhanced cell migration into the simulated wound site. A combination of negative pressure and increased doses of lithium synergistically increased Wnt signaling and demonstrated further enhanced cell migration into simulated wound sites, with maximal filling of the simulated wound observed at lithium concentrations of at least 10mM.


Assuntos
Lítio/farmacologia , Tratamento de Ferimentos com Pressão Negativa , Cicatrização/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Terapia Combinada , Relação Dose-Resposta a Droga , Camundongos , Células NIH 3T3 , Fatores de Tempo , Ativação Transcricional/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/genética
4.
Biomaterials ; 35(28): 8092-102, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24965886

RESUMO

We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5 mm in distance at 5 million cells/mL density under the physiological flow condition. In static-cultured vascular channels, active angiogenic sprouting from the vessel surface was observed whereas physiological flow strongly suppressed this process. Gene expression analysis was reported in this study to show the potential of this vessel model in vascular biology research. The methods have great potential in vascularized tissue fabrication using 3D bio-printing technology as the vascular channel is simultaneously created while cells and matrix are printed around the channel in desired 3D patterns. It can also serve as a unique experimental tool for investigating fundamental mechanisms of vascular remodeling with extracellular matrix and maturation process under 3D flow condition.


Assuntos
Técnicas de Cultura de Células/métodos , Hidrogéis/química , Impressão Tridimensional , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais , Sobrevivência Celular , Dextranos/química , Matriz Extracelular/química , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Microscopia de Fluorescência , Neovascularização Fisiológica , Perfusão , RNA/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...