Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 58(47): 16764-16769, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31339216

RESUMO

Nicotinamide adenine dinucleotide (NAD+ ) is one of the most well-known redox cofactors carrying electrons. Now, it is reported that the intrinsically charged NAD+ motif can serve as an active electrode in electrochemical lithium cells. By anchoring the NAD+ motif by the anion incorporation, redox activity of the NAD+ is successfully implemented in conventional batteries, exhibiting the average voltage of 2.3 V. The operating voltage and capacity are tunable by altering the anchoring anion species without modifying the redox center itself. This work not only demonstrates the redox capability of NAD+ , but also suggests that anchoring the charged molecules with anion incorporation is a viable new approach to exploit various charged biological cofactors in rechargeable battery systems.


Assuntos
Fontes de Energia Elétrica , Eletroquímica/instrumentação , Eletrodos , Lítio/química , Niacinamida/química , Oxirredução
2.
Nanoscale ; 11(28): 13219-13226, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31066736

RESUMO

We have prepared a highly luminescent quantum dot (QDs)-TiO2 nanocomplex film by the dip coating method. Because QDs with 3-mercaptopropionic acid as a ligand adsorb ionized Ti+ cations on the TiO2 particle, the average distance between the QDs can be changed through controlling the porosity in the film. The porosity is controlled using ethyl cellulose (EC). EC is the best material for well dispersing the hydroxyl functional group (-OH) in the chemical structure, and forming pores inside the film under the decomposition temperature (above 698 °F). As the porosity decreases, the average decay time controlled by the porosity increases to the maximum 91.2 ns. On the other hand, the amount of QDs decreased to 50%, hindering the increase of photo-luminescence (PL) intensity. Through this result, we have found that the PL intensity of the QD films is strongly related to the amount of the QDs and the resolution of aggregation. Consequently, we have optimized the porosity of the film and obtained high PL intensities up to approximately 17 times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...