Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38473392

RESUMO

Aberrant expression of the pluripotency-associated transcription factor Sox2 is associated with poor prognosis in colorectal cancer (CRC). We investigated the regulatory roles of major post-translational modifications in Sox2 using two CRC cell lines, SW480 and SW620, derived from the same patient but with low and high Sox2 expression, respectively. Acetylation of K75 in the Sox2 nuclear export signal was relatively increased in SW480 cells and promotes Sox2 nucleocytoplasmic shuttling and proteasomal degradation of Sox2. LC-MS-based proteomics analysis identified HDAC4 and p300 as binding partners involved in the acetylation-mediated control of Sox2 expression in the nucleus. Sox2 K75 acetylation is mediated by the acetyltransferase activity of CBP/p300 and ACSS3. In SW620 cells, HDAC4 deacetylates K75 and is regulated by miR29a. O-GlcNAcylation on S246, in addition to K75 acetylation, also regulates Sox2 stability. These findings provide insights into the regulation of Sox2 through multiple post-translational modifications and pathways in CRC.

2.
Front Oncol ; 13: 1212812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965445

RESUMO

Introduction: Although patients with colorectal cancer (CRC) can receive optimal treatment, the risk of recurrence remains. This study aimed to evaluate whether the tumor microbiome can be a predictor of recurrence in patients with stage III CRC. Methods: Using 16S rRNA gene sequencing, we analyzed the microbiomes of tumor and adjacent tissues acquired during surgery in 65 patients with stage III CRC and evaluated the correlation of the tissue microbiome with CRC recurrence. Additionally, the tumor tissue microbiome data of 71 patients with stage III CRC from another center were used as a validation set. Results: The microbial diversity and abundance significantly differed between tumor and adjacent tissues. In particular, Streptococcus and Gemella were more abundant in tumor tissue samples than in adjacent tissue samples. The microbial diversity and abundance in tumor and adjacent tissues did not differ according to the presence of recurrence, except for one genus in the validation set. Logistic regression analysis revealed that a recurrence prediction model including tumor tissue microbiome data had a better prediction performance than clinical factors (area under the curve [AUC] 0.846 vs. 0.679, p = 0.009), regardless of sex (male patients: AUC 0.943 vs. 0.818, p = 0.043; female patients: AUC 0.885 vs. 0.590, p = 0.017). When this prediction model was applied to the validation set, it had a higher AUC value than clinical factors in female patients. Conclusion: Our results suggest that the tumor microbiome of patients with CRC be a potential predictor of postoperative disease recurrence.

3.
Exp Mol Med ; 53(11): 1759-1768, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34819616

RESUMO

Sox2 is a core transcription factor in embryonic stem cells (ESCs), and O-GlcNAcylation is a type of post-translational modification of nuclear-cytoplasmic proteins. Although both factors play important roles in the maintenance and differentiation of ESCs and the serine 248 (S248) and threonine 258 (T258) residues of Sox2 are modified by O-GlcNAcylation, the function of Sox2 O-GlcNAcylation is unclear. Here, we show that O-GlcNAcylation of Sox2 at T258 regulates mouse ESC self-renewal and early cell fate. ESCs in which wild-type Sox2 was replaced with the Sox2 T258A mutant exhibited reduced self-renewal, whereas ESCs with the Sox2 S248A point mutation did not. ESCs with the Sox2 T258A mutation heterologously introduced using the CRISPR/Cas9 system, designated E14-Sox2TA/WT, also exhibited reduced self-renewal. RNA sequencing analysis under self-renewal conditions showed that upregulated expression of early differentiation genes, rather than a downregulated expression of self-renewal genes, was responsible for the reduced self-renewal of E14-Sox2TA/WT cells. There was a significant decrease in ectodermal tissue and a marked increase in cartilage tissue in E14-Sox2TA/WT-derived teratomas compared with normal E14 ESC-derived teratomas. RNA sequencing of teratomas revealed that genes related to brain development had generally downregulated expression in the E14-Sox2TA/WT-derived teratomas. Our findings using the Sox2 T258A mutant suggest that Sox2 T258 O-GlcNAc has a positive effect on ESC self-renewal and plays an important role in the proper development of ectodermal lineage cells. Overall, our study directly links O-GlcNAcylation and early cell fate decisions.


Assuntos
Autorrenovação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Treonina/metabolismo , Alelos , Animais , Diferenciação Celular/genética , Linhagem da Célula , Autorrenovação Celular/genética , Células Cultivadas , Imunofluorescência , Edição de Genes , Regulação da Expressão Gênica , Glicosilação , Camundongos , Mutação , Processamento de Proteína Pós-Traducional , Fatores de Transcrição SOXB1/genética , Teratoma/etiologia , Teratoma/metabolismo , Teratoma/patologia
4.
Cancers (Basel) ; 12(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932964

RESUMO

Octamer-binding transcription factor 4 (Oct4) plays an important role in maintaining pluripotency in embryonic stem cells and is closely related to the malignancies of various cancers. Although posttranslational modifications of Oct4 have been widely studied, most of these have not yet been fully characterized, especially in cancer. In this study, we investigated the role of phosphorylation of serine 236 of OCT4 [OCT4 (S236)] in human germ cell tumors (GCTs). OCT4 was phosphorylated at S236 in a cell cycle-dependent manner in a patient sample and GCT cell lines. The substitution of endogenous OCT4 by a mimic of phosphorylated OCT4 with a serine-to-aspartate mutation at S236 (S236D) resulted in tumor cell differentiation, growth retardation, and inhibition of tumor sphere formation. GCT cells expressing OCT4 S236D instead of endogenous OCT4 were similar to cells with OCT4 depletion at the mRNA transcript level as well as in the phenotype. OCT4 S236D also induced tumor cell differentiation and growth retardation in mouse xenograft experiments. Inhibition of protein phosphatase 1 by chemicals or short hairpin RNAs increased phosphorylation at OCT4 (S236) and resulted in the differentiation of GCTs. These results reveal the role of OCT4 (S236) phosphorylation in GCTs and suggest a new strategy for suppressing OCT4 in cancer.

5.
Biomolecules ; 9(10)2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658771

RESUMO

Temozolomide is the current first-line treatment for glioblastoma patients but, because many patients are resistant to it, there is an urgent need to develop antitumor agents to treat temozolomide-resistant glioblastoma. Gossypol, a natural polyphenolic compound, has been studied as a monotherapy or combination therapy for the treatment of glioblastoma. The combination of gossypol and temozolomide has been shown to inhibit glioblastoma, but it is not clear yet whether gossypol alone can suppress temozolomide-resistant glioblastoma. We find that gossypol suppresses the growth of temozolomide-resistant glioblastoma cells in both tumor sphere and adherent culture conditions, with tumor spheres showing the greatest sensitivity. Molecular docking and binding energy calculations show that gossypol has a similar affinity to the Bcl2 (B-cell lymphoma 2) family of proteins and several dehydrogenases. Gossypol reduces mitochondrial membrane potential and cellular ATP levels before cell death, which suggests that gossypol inhibits several dehydrogenases in the cell's metabolic pathway. Treatment with a Bcl2 inhibitor does not fully explain the effect of gossypol on glioblastoma. Overall, this study demonstrates that gossypol can suppress temozolomide-resistant glioblastoma and will be helpful for the refinement of gossypol treatments by elucidating some of the molecular mechanisms of gossypol in glioblastoma.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Anticoncepcionais Masculinos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Gossipol/farmacologia , Temozolomida/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação de Acoplamento Molecular , Células Tumorais Cultivadas
6.
Exp Mol Med ; 50(10): 1-12, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333528

RESUMO

Glioblastoma is a highly malignant tumor that easily acquires resistance to treatment. The stem-cell-like character (stemness) has been thought to be closely associated with the treatment resistance of glioblastoma cells. In this study, we determined that farnesyl diphosphate synthase (FDPS), a key enzyme in isoprenoid biosynthesis, plays an important role in maintaining glioblastoma stemness. A comparison of the mRNA expression in patient-derived glioblastoma sphere cells, which maintain stemness, and their differentiated counterparts, which lose stemness, via RNA sequencing showed that most of the altered genes were networked in the cholesterol biosynthesis pathway. We screened Federal Drug Administration (FDA)-approved drugs targeting specific enzymes in the cholesterol biosynthesis pathway for their ability to inhibit glioblastoma sphere formation. Inhibitors of FDPS, such as alendronate and zoledronate, significantly reduced the formation of glioblastoma spheres, and alendronate was effective at a lower molar concentration than zoledronate. Knockdown of FDPS using short hairpin RNA also completely inhibited the formation of secondary spheres. FDPS mRNA in patients with glioblastoma was associated with malignancy in three independent microarray data sets. RNA sequencing showed that alendronate treatment reduced the embryonic stem cell signature and activated development- and necrosis-related pathways in glioblastoma spheres. These results suggest that FDPS is important for the maintenance of glioblastoma stemness and that alendronate, a drug widely used to treat osteoporosis, can be repositioned to treat glioblastoma.


Assuntos
Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Colesterol/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Esferoides Celulares , Transcriptoma , Células Tumorais Cultivadas
7.
Biochem Biophys Res Commun ; 503(3): 1980-1986, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30078675

RESUMO

Germ cell tumours (GCTs) are one of the most threatening malignancies in young men and women. Although several reports have suggested the importance of OCT4 in human GCTs, its role has not been clearly investigated on a molecular level. In this study, we revealed GCT-specific direct transcriptional target genes of OCT4. Conditional knockdown of OCT4 in GCT cell lines reduced cell proliferation by affecting both cell cycle and death. Knockdown of OCT4 also reduced stemness of GCTs, as assessed by the expression of other stemness factors, alkaline phosphatase staining, and tumour sphere formation ability. Analysis of whole mRNA expression patterns among GCT cells harbouring endogenous, depleted, and rescued OCT4 revealed 1133 OCT4 target genes in GCT. Combined analysis of both the chromatin binding signature of OCT4 and the genes whose expression levels were changed by OCT4 revealed 258 direct target genes of OCT4 in GCTs. In a similar way, 594 direct target genes in normal embryonic stem cells (ESCs) were identified. Among these two sets of OCT4 direct target genes, 38 genes were common between GCTs and ESCs, most of which were related to regulation of pluripotency, and 220 genes were specific to GCTs, most of which were related to focal adhesion and extracellular matrix organisation. These results provide a molecular basis for how OCT4 regulates GCT stemness and will aid our understanding of the role of OCT4 in other cancers.


Assuntos
Matriz Extracelular/genética , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Células-Tronco Neoplásicas/patologia , Fator 3 de Transcrição de Octâmero/metabolismo , Fosfatase Alcalina/análise , Fosfatase Alcalina/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Doxiciclina/farmacologia , Citometria de Fluxo , Redes Reguladoras de Genes/genética , Humanos , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/antagonistas & inibidores , Fator 3 de Transcrição de Octâmero/genética , Transcrição Gênica/genética
8.
Exp Mol Med ; 48(12): e277, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27932791

RESUMO

A small proportion of cancer cells have stem-cell-like properties, are resistant to standard therapy and are associated with a poor prognosis. The metabolism of such drug-resistant cells differs from that of nearby non-resistant cells. In this study, the metabolism of drug-resistant lung adenocarcinoma cells was investigated. The expression of genes associated with oxidative phosphorylation in the mitochondrial membrane was negatively correlated with the prognosis of lung adenocarcinoma. Because the mitochondrial membrane potential (MMP) reflects the functional status of mitochondria and metastasis is the principal cause of death due to cancer, the relationship between MMP and metastasis was evaluated. Cells with a higher MMP exhibited greater migration and invasion than those with a lower MMP. Cells that survived treatment with cisplatin, a standard chemotherapeutic drug for lung adenocarcinoma, exhibited increased MMP and enhanced migration and invasion compared with parental cells. Consistent with these findings, inhibition of mitochondrial activity significantly impeded the migration and invasion of cisplatin-resistant cells. RNA-sequencing analysis indicated that the expression of mitochondrial complex genes was upregulated in cisplatin-resistant cells. These results suggested that drug-resistant cells have a greater MMP and that inhibition of mitochondrial activity could be used to prevent metastasis of drug-resistant lung adenocarcinoma cells.


Assuntos
Adenocarcinoma/patologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/patologia , Mitocôndrias/patologia , Invasividade Neoplásica/patologia , Adenocarcinoma/diagnóstico , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma de Pulmão , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cisplatino/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...