Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 24(1): 2214854, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287816

RESUMO

The graphene-based aerogels with good electrical conductivity and compressibility have been reported. However, it is challenging to fabricate the graphene aerogel to have excellent mechanical stability for its application in wearable devices. Thus, inspired by macroscale arch-shaped elastic structures and the importance of crosslinking in microstructural stability, we synthesized the mechanically stable reduced graphene oxide aerogels with small elastic modulus by optimizing the reducing agent to make the aligned wrinkled microstructure in which physical crosslinking is dominant. We used L-ascorbic acid, urea, and hydrazine hydrate as reducing agents to synthesize the graphene aerogels rGO-LAA, rGO-Urea, and rGO-HH, respectively. Hydrazine hydrate was found to be best in enhancing the physical and ionic interaction among graphene nanoflakes to achieve a wavy structure with excellent fatigue resistance. Notably, the optimized rGO-HH aerogel maintained structural stability even after 1000 cycles of compression of 50% strain and decompression, showing 98.7% stress retention and 98.1% height retention. We also studied the piezoresistive properties of the rGO-HH aerogel and showed that the rGO-HH-based pressure sensor exhibited excellent sensitivity (~5.7 kPa-1) with good repeatability. Hence, a super-compressible and mechanically stable piezoresistive material for wearable functional devices was demonstrated by controlling the microstructure and surface chemistry of the reduced graphene oxide aerogel.

2.
ACS Omega ; 7(20): 17144-17150, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35647434

RESUMO

Ammonia has emerged as a potential working fluid in adsorption heat pumps (AHPs) for clean energy conversion. It would be necessary to develop an efficient adsorbent with high-density ammonia uptake under high gas pressures in the low-temperature range for waste heat. Herein, a porous nanocomposite with MIL-101(Cr)-NH2 (MIL-A) and reduced graphene oxide (rGO) was developed to enhance the ammonia adsorption capacity over high ammonia pressures (3-5 bar) and low working temperatures (20-40 °C). A one-pot hydrothermal reaction could form a two-dimensional sheet-like nanocomposite where MIL-A nanoparticles were well deposited on the surface of rGO. The MIL-A nanoparticles were shown to grow on the rGO surface through chemical bonding between chromium metal centers in MIL-A and oxygen species in rGO. We demonstrated that the nanocomposite with 2% GO showed higher ammonia uptake capacity at 5 bar compared with pure MIL-A and rGO. Our strategy to incorporate rGO with MIL-A nanoparticles would further be generalizable to other metal-organic frameworks for improving the ammonia adsorption capacity in AHPs.

3.
ACS Omega ; 7(23): 19484-19490, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35721892

RESUMO

Ammonia has recently emerged as a promising hydrogen carrier for renewable energy conversion. Establishing a better understanding and control of ammonia adsorption and desorption is necessary to improve future energy generation. Metal-organic frameworks (MOFs) have shown improved ammonia capacity and stability over conventional adsorbents such as silica and zeolite. However, ammonia desorption requires high temperature over 150 °C, which is not desirable for energy-efficient ammonia reuse and recycling. Here, we loaded silver nanoparticles from 6.6 to 51.4 wt% in MIL-101 (Ag@MIL-101) using an impregnation method to develop an efficient MOF-based hybrid adsorbent for ammonia uptake. The incorporation of metal nanoparticles into MIL-101 has not been widely explored for ammonia uptake, even though such hybrid nanostructures have significantly enhanced catalytic activities and gas sensing capacities. Structural features of Ag@MIL-101 with different Ag wt% were examined using transmission electron microscopy, X-ray powder diffraction, and infrared spectroscopy, demonstrating successful formation of silver nanoparticles in MIL-101. Ag@MIL-101 (6.6 wt%) showed hysteresis in the N2 isotherm and an increase in the fraction of larger pores, indicating that mesopores were generated during the impregnation. Temperature-programmed desorption with ammonia was performed to understand the binding affinity of ammonia molecules on Ag@MIL-101. The binding affinity was the lowest with Ag@MIL-101 (6.6 wt%), including the largest relative fraction in the amount of desorbed ammonia molecules. It was presumed that cooperative interaction between the silver nanoparticle and the MIL-101 framework for ammonia molecules could allow such a decrease in the desorption temperature. Our design strategy with metal nanoparticles incorporated into MOFs would contribute to develop hybrid MOFs that reduce energy consumption when reusing ammonia from storage.

4.
Nanotechnology ; 33(17)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35021165

RESUMO

We propose a method of improving the thermoelectric properties of graphene using defect engineering through plasma irradiation and atomic layer deposition (ALD). We intentionally created atomic blemishes in graphene by oxygen plasma treatment and subsequently healed the atomistically defective places using Pt-ALD. After healing, the thermal conductivity of the initially defective graphene increased slightly, while the electrical conductivity and the square of the Seebeck coefficient increased pronouncedly. The thermoelectric figure of merit of the Pt-ALD treated graphene was measured to be over 4.8 times higher than the values reported in the literature. We expect that our study could provide a useful guideline for the development of graphene-based thermoelectric devices.

5.
ACS Omega ; 6(43): 29054-29059, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34746594

RESUMO

The thermal properties of the polymer, together with mechanical stability, have been one of the key engineering factors to be considered for various applications. Here, we engineered the thermal conductivity of the amorphous poly(acrylic acid) (PAA) polymer by vapor-phase infiltration (VPI), which has usually occurred during the atomic layer deposition process. We observed that the VPI causes metal infiltration (e.g., Al and Zn) into the amorphous PAA polymer, which noticeably increases the thermal conductivity of the PAA polymer. From spectroscopy analysis and density functional theory simulations, we found that the carboxyl groups (-COOH) in PAA are notably modified and the bonding states of carbon and oxygen are significantly altered by the infiltrated metal. The newly formed Al-mediated bonds likely provide continuous phonon propagation pathways, thereby enhancing the thermal conductance. We believe that VPI could be a simple and useful way to engineer the thermal properties of various polymeric materials.

6.
Biomolecules ; 11(2)2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498514

RESUMO

Thermal interface materials (TIMs), typically composed of a polymer matrix with good wetting properties and thermally conductive fillers, are applied to the interfaces of mating components to reduce the interfacial thermal resistance. As a filler material, silver has been extensively studied because of its high intrinsic thermal conductivity. However, the high cost of silver and its toxicity has hindered the wide application of silver-based TIMs. Copper is an earth-abundant element and essential micronutrient for humans. In this paper, we present a copper-based multi-dimensional filler composed of three-dimensional microscale copper flakes, one-dimensional multi-walled carbon nanotubes (MWCNTs), and zero-dimensional copper nanoparticles (Cu NPs) to create a safe and low-cost TIM with a high thermal conductivity. Cu NPs synthesized by microwave irradiation of a precursor solution were bound to MWCNTs and mixed with copper flakes and polyimide matrix to obtain a TIM paste, which was stable even in a high-temperature environment. The cross-plane thermal conductivity of the copper-based TIM was 36 W/m/K. Owing to its high thermal conductivity and low cost, the copper-based TIM could be an industrially useful heat-dissipating material in the future.


Assuntos
Cobre/química , Condutividade Elétrica , Nanopartículas/química , Varredura Diferencial de Calorimetria , Temperatura Alta , Lasers , Nanopartículas Metálicas , Micronutrientes/química , Nanocompostos , Nanotubos de Carbono/química , Tamanho da Partícula , Polímeros , Ligação Proteica , Temperatura , Condutividade Térmica
7.
ACS Appl Mater Interfaces ; 12(35): 39154-39162, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805916

RESUMO

Although nanosizing of multiphase pseudocapacitive nanomaterials could dramatically improve their electrochemical properties, a proper way to simultaneously control both the size and the phase of the pseudocapacitive materials is still elusive. Herein, we employed a commercial CO2 laser engraver to do the transformation of a metal-organic framework (MOF-74(Ni)) into size-controlled Ni nanoparticles (4-12 nm) in porous carbon. The produced Ni@carbon hybrid showed the best specific capacitance of 925 F/g with excellent cycling stability when the particle size is 5.5 nm. We found that the highly redox-active α-Ni(OH)2 is more predominantly formed than the less redox-active ß-Ni(OH)2 as the particle size becomes smaller. Our results substantiate that various MOFs could be created into high-performance pseudocapacitive materials with the controlled size and phase. It is believed that the laser-based synthesis could also serve as a powerful tool for the discovery of new MOF-derived materials in the field of energy storage and catalysis.

8.
Opt Express ; 28(12): 17143-17152, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32679927

RESUMO

This study demonstrates a metamaterial bolometer that can detect terahertz (THz) waves by measuring variations in electrical resistance. A metamaterial pattern for enhanced THz waves absorption and a composite material with a high temperature coefficient of resistance (TCR) are incorporated into a single layer of the bolometer chip to realize a compact and highly sensitive device. To detect the temperature change caused by the absorption of the THz waves, a polydimethylsiloxane mixed with carbon black microparticles is used. The thermosensitive composite has TCR ranging from 1.88%/K to 3.11%/K at room temperature (22.2-23.8°C). In addition, a microscale metamaterial without a backside reflector is designed to enable the measurement of the resistance and to enhance the sensitivity of the bolometer. The proposed configuration effectively improves thermal response of the chip as well as the absorption of the THz waves. It was confirmed that the irradiated THz waves can be detected via the increment in the electrical resistance. The resistance change caused by the absorption of the THz waves is detectable in spite of the changes in resistance originating from the background thermal noise. The proposed metamaterial bolometer could be applied to detect chemical or biological molecules that have fingerprints in the THz band by measuring the variation of the resistance without using the complex and bulky THz time-domain spectroscopy system.

9.
Sci Rep ; 7: 43581, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28240242

RESUMO

Colloidal quantum dots (QDs) afford huge potential in numerous applications owing to their excellent optical and electronic properties. After the synthesis of QDs, separating QDs from unreacted impurities in large scale is one of the biggest issues to achieve scalable and high performance optoelectronic applications. Thus far, however, continuous purification method, which is essential for mass production, has rarely been reported. In this study, we developed a new continuous purification process that is suitable to the mass production of high-quality QDs. As-synthesized QDs are driven by electrophoresis in a flow channel and captured by porous electrodes and finally separated from the unreacted impurities. Nuclear magnetic resonance and ultraviolet/visible/near-infrared absorption spectroscopic data clearly showed that the impurities were efficiently removed from QDs with the purification yield, defined as the ratio of the mass of purified QDs to that of QDs in the crude solution, up to 87%. Also, we could successfully predict the purification yield depending on purification conditions with a simple theoretical model. The proposed large-scale purification process could be an important cornerstone for the mass production and industrial use of high-quality QDs.

10.
Clin Hemorheol Microcirc ; 65(1): 49-56, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27392849

RESUMO

Single-walled carbon nanotubes (SWNTs) have been increasingly used in a variety of biomedical applications, such as in vivo delivery of drugs and tumor imaging. Potential exposure of SWNTs to human red blood cells (RBCs) may cause serious toxicity including alteration of mechanical properties of cells. The present study investigated the cellular response to exposure of SWNTs with measuring rheological characteristics of RBCs, including hemolysis, deformability, aggregation, and morphological changes. RBCs were exposed to two different dispersion-state samples (i.e. individual SWNTs and bundled SWNTs) in chitosan hydroxyphenyl acetamide (CHPA) solutions. The concentrations of SWNTs were carefully chosen to avoid any hemorheological alterations due to hemolysis. Rheological characteristics were measured using microfluidic-laser diffractometry and aggregometry. Our results show that the bundled SWNTs had higher hemolytic activity than did the individual SWNTs. RBC aggregation apparently decreased as the concentration of SWNTs or incubation time increased. Additionally, bundled SWNTs caused significant alterations in the shape and fusion of RBCs. In conclusion, bundled SWNTs were found to be more toxic than individual SWNTs. These results provide important insights into the interactions between RBCs and SWNTs and will facilitate assessment of the risk of nanomaterial toxicity of blood.


Assuntos
Eritrócitos/metabolismo , Nanotubos de Carbono/química , Reologia , Humanos , Nanotubos de Carbono/análise
11.
Int J Biol Macromol ; 96: 384-391, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28013005

RESUMO

We measured the thermal conductivity of Araneus ventricosus' spider dragline silk using a suspended microdevice. The thermal conductivity of the silk fiber was approximately 0.4Wm-1K-1 at room temperature and gradually increased with an increasing temperature in a manner similar to that of other disordered crystals or proteins. In order to elucidate the effect of ß-sheet crystals in the silk, thermal denaturation was used to reduce the quantity of the ß-sheet crystals. A calculation with an effective medium approximation supported this measurement result showing that the thermal conductivity of ß-sheet crystals had an insignificant effect on the thermal conductivity of SDS. Additionally, the enhancement of bonding strength in a glycine-rich matrix by atomic layer deposition did not increase the thermal conductivity. Thus, this study suggests that the disordered part of the glycine-rich matrix prevented the peptide chains from being coaxially extended via the cross-linking covalent bonds.


Assuntos
Glicina , Seda/química , Aranhas/química , Condutividade Térmica , Animais , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica em Folha beta
12.
Adv Mater ; 28(33): 7220-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27273764

RESUMO

An ultrahigh thermal conductivity (κ = 160 W m(-1) K(-1) ) of thermal interface materials is achieved with a high enhancement factor (96). A small amount (2.3 vol%) of 1D multiwalled carbon nanotubes (MWNTs) with high κ constructs effective phonon transport pathways between microscale silver-flake islands, and a solid phonon transport junction is realized by the coalescence of silver nanoparticles pre-functionalized on the MWNTs.

13.
Rev Sci Instrum ; 87(3): 035003, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27036809

RESUMO

Microfluidic devices based on the multilayer soft lithography allow accurate manipulation of liquids, handling reagents at the sub-nanoliter level, and performing multiple reactions in parallel processors by adapting micromixers. Here, we have experimentally evaluated and compared several designs of micromixers and operating conditions to find design guidelines for the micromixers. We tested circular, triangular, and rectangular mixing loops and measured mixing performance according to the position and the width of the valves that drive nanoliters of fluids in the micrometer scale mixing loop. We found that the rectangular mixer is best for the applications of highly integrated microfluidic platforms in terms of the mixing performance and the space utilization. This study provides an improved understanding of the flow behaviors inside micromixers and design guidelines for micromixers that are critical to build higher order fluidic systems for the complicated parallel bio/chemical processes on a chip.


Assuntos
Dispositivos Lab-On-A-Chip , Cor , Desenho de Equipamento , Integração de Sistemas
14.
Analyst ; 140(19): 6705-10, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26295567

RESUMO

Silver nanowires (NWs) are increasingly utilized in technological materials and consumer products, but an effective analytical technique is not yet available to measure their concentration in the environment. Here, we present an electrochemical method to quantify Ag NWs suspended in aqueous solution. Using linear sweep voltammetry, the Ag NWs are identified by the peak potential while their concentration is revealed by the intensity of the peak current. The peak current varies linearly with the Ag NW concentration with a low detection limit of 3.50 ng mL(-1). This method is also successfully applied to quantify Ag NWs in mixtures with nanoparticles, through their specific oxidation behavior, and in wastewater obtained after the Ag NW film preparation process.

15.
J Nanosci Nanotechnol ; 15(11): 8984-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26726629

RESUMO

Carbon nanomaterials, such as carbon nanotubes (CNTs) and graphene, have attracted significant attention as good candidates for next-generation heat-spreading materials because of their high thermal conductivity, mechanical flexibility, etc. Regarding the thermal spreading performance of carbon-based nanofilms, remarkable test results have been reported mainly from the industrial side, but their validity and the physical mechanism underlying the heat transfer enhancement are still under debate. In this study, we assess the thermal spreading performance of a multi-walled CNT film on a copper foil using a non-contact characterization method in a simple and methodical manner, and discuss the possibility of carbon nanofilms as heat spreaders based on the experimental and numerical results. This study provides useful information on heat transfer enhancement by carbon nanofilms and could contribute to the development of high-performance carbon-based heat-spreading coatings.

16.
Nanoscale ; 6(23): 14467-72, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25340305

RESUMO

Colloidal quantum dot (QD) purification is typically conducted via repeating precipitation-redispersion involving massive amounts of organic solvents and has been the main obstacle in mass production of QDs with dependable surface properties. Our results show that the electric field apparently affects the streamlining of QDs and that we could continuously collect stably dispersed QDs by the electrophoretic purification process. The purification yield increases as the electric potential difference increases or the flow rate decreases, but reaches an asymptotic value. The yield can be further improved by raising the absolute magnitude of the mobility of QDs with the addition of solvents with high dielectric constants. The continuous purification process sheds light on industrial production of colloidal nanomaterials.

17.
Phys Chem Chem Phys ; 16(35): 18759-64, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25075461

RESUMO

One-dimensional conductive fillers such as single-walled carbon nanotubes (SWNTs) can be aggregated and aligned during transparent conductive film (TCF) formation by the vacuum filtration method. The potential error of analysing the average sheet resistance of these anisotropic films, using the four-point probe in-line method and the conversion formula developed assuming uniform isotropic material properties, was systematically investigated by finite element analysis and experiments. The finite element analysis of anisotropic stripe-patterned TCFs with alternating low (ρ1) and high (ρ2) resistivities revealed that the estimated average sheet resistance approached ρ1/t when the probes were parallel to the aligned nanotubes. The thickness of the film is t. It was more close to ρ2/t when the probes were perpendicular to the aligned tubes. Indeed, TCFs fabricated by the vacuum filtration method using metal-enriched SWNTs exhibited highly anisotropic local regions where tubes were aggregated and aligned. The local sheet resistances of randomly oriented, aligned, and perpendicular tube regions of the TCF at a transmittance of 89.9% were 5000, 2.4, and 12 300 Ω â–¡(-1), respectively. Resistivities of the aggregated and aligned tube region (ρ1 = 1.2 × 10(-5) Ω cm) and the region between tubes (ρ2 = 6.2 × 10(-2) Ω cm) could be approximated with the aid of finite element analysis. This work demonstrates the potential error of characterizing the average sheet resistance of anisotropic TCFs using the four-point probe in-line method since surprisingly high or low values could be obtained depending on the measurement angle. On the other hand, a better control of aggregation and alignment of nanotubes would realize TCFs with a very small anisotropic resistivity and a high transparency.

18.
Inhal Toxicol ; 25(14): 759-65, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24304302

RESUMO

Release of nanomaterials was assessed in a cleanroom workplace designed for the handling of multi-walled carbon nanotubes. During the process, the nanotubes were sprayed in a chamber fitted with an exhaust duct system. The front door of the spraying chamber was completely closed, but rear end of the chamber was partially open. Throughout a series of spray processes, three detectors - an optical particle counter, a nanoparticle aerosol monitor, and an aethalometer - counted and characterized particles escaping the chamber. Concentrations of particle surface area and black carbon emitted by the spraying were assessed assuming zero background aerosol concentration in the cleanroom. Very low concentrations of black carbon, 0.4 µg/m(3), were observed. In conclusion, in a cleanroom, low concentrations of nanomaterials were detected to be emitted from a spraying chamber into the workplace. The level of particles reaching the workplace was sufficiently low to have made their detection difficult in a normal environment. Both target nanomaterial and non-intended incidental nanomaterials were released during spraying. Despite the use of exhaust duct system in the process chamber, workers would be exposed to some particles if the chamber were partially open. The exhaust duct system was not enough to remove all the particles released in the chamber.


Assuntos
Poluentes Ocupacionais do Ar/análise , Nanotubos de Carbono/análise , Exposição Ocupacional/análise , Carbono/análise , Ambiente Controlado , Monitoramento Ambiental , Microscopia Eletrônica de Transmissão , Nanopartículas/análise , Nanotubos de Carbono/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície , Local de Trabalho
19.
Nanoscale ; 5(23): 11870-5, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24126813

RESUMO

Due to the fast development of nanotechnology, we have the capability of manipulating atomic layer systems such as graphene, hexagonal boron nitride and dichalcogenides. The major concern in the 2-dimensional nanostructures is how to preserve their exceptional single-layer properties in 3-dimensional bulk structures. In this study, we report that the extreme phonon transport in graphene is highly affected by the graphitic layer stacking based on experimental investigation of the thermal conduction in few-layer graphene, 1-7 layers thick, suspended over holes of various diameters. We fabricate freestanding axisymmetric graphene structures without any perturbing substrate, and measure the in-plane transport property in terms of thermal conduction by using Raman spectroscopy. From the difference in susceptibility to substrate effect, size effect on hot-spot temperature variation and layer number dependence of thermal conductivity, we show that the graphitic membranes with 2 or more layers have characteristics similar to 3-dimensional graphite, which are very different from those of 2-dimensional graphene membranes. This implies that the scattering of out-of-plane phonons by interlayer atomic coupling could be a key mechanism governing the intrinsic thermal property.

20.
Colloids Surf B Biointerfaces ; 102: 95-101, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23006556

RESUMO

Individual dispersion of single-walled carbon nanotubes (SWNTs) in biocompatible media is of particular interest for diverse biomedical and nanomedicine applications. Herein we present, for the first time, a neutral pH water-soluble chitosan derivative, chitosan-hydroxyphenyl acetamide (CHPA), prepared by functionalizing the amino groups of chitosan with 4-hydroxyphenyl acetic acid, as an efficient biocompatible dispersant to effectively debundle and individually disperse SWNTs in a neutral aqueous solution. For efficient individual dispersion of SWNTs, various process conditions such as centrifugation speed, sonication power, and CNT:dispersant ratio were optimized based on characterizations by atomic force microscopy, optical absorption spectroscopy, and Raman spectroscopy. Evaluation of the SWNT-CHPA solution showed superior individual dispersion to samples prepared using other biocompatible dispersants. The highly efficient individual dispersion of SWNTs with the biocompatible dispersant opens up possibilities for its applications in the bio- and nanomedical fields.


Assuntos
Quitosana/química , Nanotubos de Carbono/química , Acetamidas/química , Materiais Biocompatíveis/química , Fenoxiacetatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...