Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Proteome Res ; 21(10): 2277-2292, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36006872

RESUMO

Previously, we reported that heterologous expression of an embryonic transcription factor, Tbx18, reprograms ventricular cardiomyocytes into induced pacemaker cells (Tbx18-iPMs), though the key pathways are unknown. Here, we have used a tandem mass tag proteomic approach to characterize the impact of Tbx18 on neonatal rat ventricular myocytes. Tbx18 expression triggered vast proteome remodeling. Tbx18-iPMs exhibited increased expression of known pacemaker ion channels, including Hcn4 and Cx45 as well as upregulation of the mechanosensitive ion channels Piezo1, Trpp2 (PKD2), and TrpM7. Metabolic pathways were broadly downregulated, as were ion channels associated with ventricular excitation-contraction coupling. Tbx18-iPMs also exhibited extensive intracellular cytoskeletal and extracellular matrix remodeling, including 96 differentially expressed proteins associated with the epithelial-to-mesenchymal transition (EMT). RNAseq extended coverage of low abundance transcription factors, revealing upregulation of EMT-inducing Snai1, Snai2, Twist1, Twist2, and Zeb2. Finally, network diffusion mapping of >200 transcriptional regulators indicates EMT and heart development factors occupy adjacent network neighborhoods downstream of Tbx18 but upstream of metabolic control factors. In conclusion, transdifferentiation of cardiac myocytes into pacemaker cells entails massive electrogenic, metabolic, and cytostructural remodeling. Structural changes exhibit hallmarks of the EMT. The results aid ongoing efforts to maximize the yield and phenotypic stability of engineered biological pacemakers.


Assuntos
Transdiferenciação Celular , Transição Epitelial-Mesenquimal , Miócitos Cardíacos , Proteínas com Domínio T , Animais , Transição Epitelial-Mesenquimal/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Miócitos Cardíacos/metabolismo , Proteoma/metabolismo , Proteômica , Ratos , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Canais de Cátion TRPM/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Heart ; 108(22): 1800-1806, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35680379

RESUMO

OBJECTIVE: Established preclinical imaging assessments of heart failure (HF) risk are based on macrostructural cardiac remodelling. Given that microstructural alterations may also influence HF risk, particularly in women, we examined associations between microstructural alterations and incident HF. METHODS: We studied N=2511 adult participants (mean age 65.7±8.8 years, 56% women) of the Framingham Offspring Study who were free of cardiovascular disease at baseline. We employed texture analysis of echocardiography to quantify microstructural alteration, based on the high spectrum signal intensity coefficient (HS-SIC). We examined its relations to incident HF in sex-pooled and sex-specific Cox models accounting for traditional HF risk factors and macrostructural alterations. RESULTS: We observed 94 new HF events over 7.4±1.7 years. Individuals with higher HS-SIC had increased risk for incident HF (HR 1.67 per 1-SD in HS-SIC, 95% CI 1.31 to 2.13; p<0.0001). Adjusting for age and antihypertensive medication use, this association was significant in women (p=0.02) but not men (p=0.78). Adjusting for traditional risk factors (including body mass index, total/high-density lipoprotein cholesterol, blood pressure traits, diabetes and smoking) attenuated the association in women (HR 1.30, p=0.07), with mediation of HF risk by the HS-SIC seen for a majority of these risk factors. However, the HS-SIC association with HF in women remained significant after adjusting for relative wall thickness (representing macrostructure alteration) in addition to these risk factors (HR 1.47, p=0.02). CONCLUSIONS: Cardiac microstructural alterations are associated with elevated risk for HF, particularly in women. Microstructural alteration may identify sex-specific pathways by which individuals progress from risk factors to clinical HF.


Assuntos
Insuficiência Cardíaca , Adulto , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Idoso , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/etiologia , Ecocardiografia , Fatores de Risco , Pressão Sanguínea , Modelos de Riscos Proporcionais
3.
Cardiovasc Ultrasound ; 20(1): 9, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35369883

RESUMO

BACKGROUND: Immune-inflammatory myocardial disease contributes to multiple chronic cardiac processes, but access to non-invasive screening is limited. We have previously developed a method of echocardiographic texture analysis, called the high-spectrum signal intensity coefficient (HS-SIC) which assesses myocardial microstructure and previously associated with myocardial fibrosis. We aimed to determine whether this echocardiographic texture analysis of cardiac microstructure can identify inflammatory cardiac disease in the clinical setting. METHODS: We conducted a retrospective case-control study of 318 patients with distinct clinical myocardial pathologies and 20 healthy controls. Populations included myocarditis, atypical chest pain/palpitations, STEMI, severe aortic stenosis, acute COVID infection, amyloidosis, and cardiac transplantation with acute rejection, without current rejection but with prior rejection, and with no history of rejection. We assessed the HS-SIC's ability to differentiate between a broader diversity of clinical groups and healthy controls. We used Kruskal-Wallis tests to compare HS-SIC values measured in each of the clinical populations with those in the healthy control group and compared HS-SIC values between the subgroups of cardiac transplantation rejection status. RESULTS: For the total sample of N = 338, the mean age was 49.6 ± 20.9 years and 50% were women. The mean ± standard error of the mean of HS-SIC were: 0.668 ± 0.074 for controls, 0.552 ± 0.049 for atypical chest pain/palpitations, 0.425 ± 0.058 for myocarditis, 0.881 ± 0.129 for STEMI, 1.116 ± 0.196 for severe aortic stenosis, 0.904 ± 0.116 for acute COVID, and 0.698 ± 0.103 for amyloidosis. Among cardiac transplant recipients, HS-SIC values were 0.478 ± 0.999 for active rejection, 0.594 ± 0.091 for prior rejection, and 1.191 ± 0.442 for never rejection. We observed significant differences in HS-SIC between controls and myocarditis (P = 0.0014), active rejection (P = 0.0076), and atypical chest pain or palpitations (P = 0.0014); as well as between transplant patients with active rejection and those without current or prior rejection (P = 0.031). CONCLUSIONS: An echocardiographic method can be used to characterize tissue signatures of microstructural changes across a spectrum of cardiac disease including immune-inflammatory conditions.


Assuntos
COVID-19 , Cardiomiopatias , Miocardite , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Rejeição de Enxerto/diagnóstico , Humanos , Pessoa de Meia-Idade , Miocardite/diagnóstico por imagem , Estudos Retrospectivos
4.
BMJ Nutr Prev Health ; 4(1): 166-173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34308124

RESUMO

INTRODUCTION: Early reports highlighted racial/ethnic disparities in the severity of COVID-19 seen across the USA; the extent to which these disparities have persisted over time remains unclear. Our research objective was to understand temporal trends in racial/ethnic variation in severity of COVID-19 illness presenting over time. METHODS: We conducted a retrospective cohort analysis using longitudinal data from Cedars-Sinai Medical Center, a high-volume health system in Southern California. We studied patients admitted to the hospital with COVID-19 illness from 4 March 2020 through 5 December 2020. Our primary outcome was COVID-19 severity of illness among hospitalised patients, assessed by racial/ethnic group status. We defined overall illness severity as an ordinal outcome: hospitalisation but no intensive care unit (ICU) admission; admission to the ICU but no intubation; and intubation or death. RESULTS: A total of 1584 patients with COVID-19 with available demographic and clinical data were included. Hispanic/Latinx compared with non-Hispanic white patients had higher odds of experiencing more severe illness among hospitalised patients (OR 2.28, 95% CI 1.62 to 3.22) and this disparity persisted over time. During the initial 2 months of the pandemic, non-Hispanic blacks were more likely to suffer severe illness than non-Hispanic whites (OR 2.02, 95% CI 1.07 to 3.78); this disparity improved by May, only to return later in the pandemic. CONCLUSION: In our patient sample, the severity of observed COVID-19 illness declined steadily over time, but these clinical improvements were not seen evenly across racial/ethnic groups; greater illness severity continues to be experienced among Hispanic/Latinx patients.

5.
BMJ Open ; 11(2): e043584, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579769

RESUMO

OBJECTIVE: We sought to determine the extent of SARS-CoV-2 seroprevalence and the factors associated with seroprevalence across a diverse cohort of healthcare workers. DESIGN: Observational cohort study of healthcare workers, including SARS-CoV-2 serology testing and participant questionnaires. SETTINGS: A multisite healthcare delivery system located in Los Angeles County. PARTICIPANTS: A diverse and unselected population of adults (n=6062) employed in a multisite healthcare delivery system located in Los Angeles County, including individuals with direct patient contact and others with non-patient-oriented work functions. MAIN OUTCOMES: Using Bayesian and multivariate analyses, we estimated seroprevalence and factors associated with seropositivity and antibody levels, including pre-existing demographic and clinical characteristics; potential COVID-19 illness-related exposures; and symptoms consistent with COVID-19 infection. RESULTS: We observed a seroprevalence rate of 4.1%, with anosmia as the most prominently associated self-reported symptom (OR 11.04, p<0.001) in addition to fever (OR 2.02, p=0.002) and myalgias (OR 1.65, p=0.035). After adjusting for potential confounders, seroprevalence was also associated with Hispanic ethnicity (OR 1.98, p=0.001) and African-American race (OR 2.02, p=0.027) as well as contact with a COVID-19-diagnosed individual in the household (OR 5.73, p<0.001) or clinical work setting (OR 1.76, p=0.002). Importantly, African-American race and Hispanic ethnicity were associated with antibody positivity even after adjusting for personal COVID-19 diagnosis status, suggesting the contribution of unmeasured structural or societal factors. CONCLUSION AND RELEVANCE: The demographic factors associated with SARS-CoV-2 seroprevalence among our healthcare workers underscore the importance of exposure sources beyond the workplace. The size and diversity of our study population, combined with robust survey and modelling techniques, provide a vibrant picture of the demographic factors, exposures and symptoms that can identify individuals with susceptibility as well as potential to mount an immune response to COVID-19.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/diagnóstico , Pessoal de Saúde , Estudos Soroepidemiológicos , Adulto , Teorema de Bayes , COVID-19/imunologia , Teste Sorológico para COVID-19 , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Los Angeles/epidemiologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia
6.
PLoS One ; 15(7): e0236240, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32702044

RESUMO

IMPORTANCE: Certain individuals, when infected by SARS-CoV-2, tend to develop the more severe forms of Covid-19 illness for reasons that remain unclear. OBJECTIVE: To determine the demographic and clinical characteristics associated with increased severity of Covid-19 infection. DESIGN: Retrospective observational study. We curated data from the electronic health record, and used multivariable logistic regression to examine the association of pre-existing traits with a Covid-19 illness severity defined by level of required care: need for hospital admission, need for intensive care, and need for intubation. SETTING: A large, multihospital healthcare system in Southern California. PARTICIPANTS: All patients with confirmed Covid-19 infection (N = 442). RESULTS: Of all patients studied, 48% required hospitalization, 17% required intensive care, and 12% required intubation. In multivariable-adjusted analyses, patients requiring a higher levels of care were more likely to be older (OR 1.5 per 10 years, P<0.001), male (OR 2.0, P = 0.001), African American (OR 2.1, P = 0.011), obese (OR 2.0, P = 0.021), with diabetes mellitus (OR 1.8, P = 0.037), and with a higher comorbidity index (OR 1.8 per SD, P<0.001). Several clinical associations were more pronounced in younger compared to older patients (Pinteraction<0.05). Of all hospitalized patients, males required higher levels of care (OR 2.5, P = 0.003) irrespective of age, race, or morbidity profile. CONCLUSIONS AND RELEVANCE: In our healthcare system, greater Covid-19 illness severity is seen in patients who are older, male, African American, obese, with diabetes, and with greater overall comorbidity burden. Certain comorbidities paradoxically augment risk to a greater extent in younger patients. In hospitalized patients, male sex is the main determinant of needing more intensive care. Further investigation is needed to understand the mechanisms underlying these findings.


Assuntos
Infecções por Coronavirus/epidemiologia , Cuidados Críticos/estatística & dados numéricos , Hospitalização/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Adolescente , Adulto , Negro ou Afro-Americano , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus , COVID-19 , Criança , Comorbidade , Diabetes Mellitus , Feminino , Humanos , Los Angeles/epidemiologia , Masculino , Pessoa de Meia-Idade , Obesidade , Pandemias , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2 , Adulto Jovem
7.
Stem Cells ; 38(3): 352-368, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31648393

RESUMO

Cardiac differentiation of embryonic stem cells (ESCs) can give rise to de novo chamber cardiomyocytes and nodal pacemaker cells. Compared with our understanding of direct differentiation toward atrial and ventricular myocytes, the mechanisms for nodal pacemaker cell commitment are not well understood. Taking a cue from the prominence of canonical Wnt signaling during cardiac pacemaker tissue development in chick embryos, we asked if modulations of Wnt signaling influence cardiac progenitors to bifurcate to either chamber cardiomyocytes or pacemaker cells. Omitting an exogenous Wnt inhibitor, which is routinely added to maximize cardiac myocyte yield during differentiation of mouse and human ESCs, led to increased yield of spontaneously beating cardiomyocytes with action potential properties similar to those of native sinoatrial node pacemaker cells. The pacemaker phenotype was accompanied by enhanced expression of genes and gene products that mark nodal pacemaker cells such as Hcn4, Tbx18, Tbx3, and Shox2. Addition of exogenous Wnt3a ligand, which activates canonical Wnt/ß-catenin signaling, increased the yield of pacemaker-like myocytes while reducing cTNT-positive pan-cardiac differentiation. Conversely, addition of inhibitors of Wnt/ß-catenin signaling led to increased chamber myocyte lineage development at the expense of pacemaker cell specification. The positive impact of canonical Wnt signaling on nodal pacemaker cell differentiation was evidenced in direct differentiation of two human ESC lines and human induced pluripotent stem cells. Our data identify the Wnt/ß-catenin pathway as a critical determinant of cardiac myocyte subtype commitment during ESC differentiation: endogenous Wnt signaling favors the pacemaker lineage, whereas its suppression promotes the chamber cardiomyocyte lineage.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Mesoderma/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Via de Sinalização Wnt/genética , Animais , Diferenciação Celular , Humanos , Camundongos
8.
Crit Care ; 23(1): 63, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30795776

RESUMO

BACKGROUND: Mechanical ventilation is strongly associated with cognitive decline after critical illness. This finding is particularly evident among older individuals who have pre-existing cognitive impairment, most commonly characterized by varying degrees of cerebral amyloid-ß accumulation, neuroinflammation, and blood-brain barrier dysfunction. We sought to test the hypothesis that short-term mechanical ventilation contributes to the neuropathology of cognitive impairment by (i) increasing cerebral amyloid-ß accumulation in mice with pre-existing Alzheimer's disease pathology, (ii) increasing neurologic and systemic inflammation in wild-type mice and mice with pre-existing Alzheimer's disease pathology, and (iii) increasing hippocampal blood-brain barrier permeability in wild-type mice and mice with pre-existing Alzheimer's disease pathology. METHODS: We subjected double transgenic Alzheimer's disease (APP/PSEN1) and wild-type mice to mechanical ventilation for 4 h and compared to non-mechanically ventilated Alzheimer's disease model and wild-type mice. Cerebral soluble/insoluble amyloid-ß1-40/amyloid-ß1-42 and neurological and systemic markers of inflammation were quantified. Hippocampal blood-brain barrier permeability was quantified using a novel methodology that enabled assessment of small and large molecule permeability across the blood-brain barrier. RESULTS: Mechanical ventilation resulted in (i) a significant increase in cerebral soluble amyloid-ß1-40 (p = 0.007) and (ii) significant increases in neuroinflammatory cytokines in both wild-type and Alzheimer's disease mice which, in most cases, were not reflected in the plasma. There were (i) direct correlations between polymorphonuclear cells in the bronchoalveolar fluid and cerebral soluble amyloid-ß1-40 (p = 0.0033), and several Alzheimer's disease-relevant neuroinflammatory biomarkers including cerebral TNF-α and IL-6; (iii) significant decreases in blood-brain barrier permeability in mechanically ventilated Alzheimer's disease mice and a trend towards increased blood-brain barrier permeability in mechanically ventilated wild-type mice. CONCLUSIONS: These results provide the first evidence that short-term mechanical ventilation independently promotes the neuropathology of Alzheimer's disease in subjects with and without pre-existing cerebral Alzheimer's disease pathology. Future studies are needed to further clarify the specific mechanisms by which this occurs and to develop neuroprotective mechanical ventilation strategies that mitigate the risk of cognitive decline after critical illness.


Assuntos
Doença de Alzheimer/terapia , Disfunção Cognitiva/etiologia , Respiração Artificial/normas , Doença de Alzheimer/enzimologia , Análise de Variância , Animais , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/métodos , Camundongos , Modelos Neurológicos , Respiração Artificial/métodos , Fatores de Tempo
9.
J Appl Physiol (1985) ; 123(3): 578-584, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28596273

RESUMO

Increased dead space is an important prognostic marker in early acute respiratory distress syndrome (ARDS) that correlates with mortality. The cause of increased dead space in ARDS has largely been attributed to increased alveolar dead space due to ventilation/perfusion mismatching and shunt. We sought to determine whether anatomic dead space also increases in response to mechanical ventilation. Mice received intratracheal lipopolysaccharide (LPS) or saline and mechanical ventilation (MV). Four-dimensional computed tomography (4DCT) scans were performed at onset of MV and after 5 h of MV. Detailed measurements of airway volumes and lung tidal volumes were performed using image analysis software. The forced oscillation technique was used to obtain measures of airway resistance, tissue damping, and tissue elastance. The ratio of airway volumes to total tidal volume increased significantly in response to 5 h of mechanical ventilation, regardless of LPS exposure, and airways demonstrated significant variation in volumes over the respiratory cycle. These findings were associated with an increase in tissue elastance (decreased lung compliance) but without changes in tidal volumes. Airway volumes increased over time with exposure to mechanical ventilation without a concomitant increase in tidal volumes. These findings suggest that anatomic dead space fraction increases progressively with exposure to positive pressure ventilation and may represent a pathological process.NEW & NOTEWORTHY We demonstrate that anatomic dead space ventilation increases significantly over time in mice in response to mechanical ventilation. The novel functional lung-imaging techniques applied here yield sensitive measures of airway volumes that may have wide applications.


Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Respiração Artificial/métodos , Espaço Morto Respiratório/fisiologia , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/terapia , Animais , Feminino , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Síndrome do Desconforto Respiratório/induzido quimicamente
10.
Pediatr Res ; 78(3): 239-246, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26042522

RESUMO

BACKGROUND: Achieving persistent expression is a prerequisite for genetic therapies for inherited metabolic enzymopathies. Such disorders potentially could be treated with gene therapy shortly after birth to prevent pathology. However, rapid cell turnover leads to hepatic episomal vector loss, which diminishes effectiveness. The current studies assessed whether tolerance to transgene proteins expressed in the neonatal period is durable and if the expression may be augmented with subsequent adeno-associated virus (AAV) administration. METHODS: AAV was administered to mice on day 2 with reinjection at 14 or at 14 and 42 d with examination of changes in hepatic copies and B and T cell-mediated immune responses. RESULTS: Immune responses to the transgene protein and AAV were absent after neonatal administration. Reinjection at 14 or at 14 and 42 d resulted in augmented expression with greater hepatic genome copies. Unlike controls, immune responses to transgene proteins were not detected in animals injected as neonates and subsequently. However, while no immune response developed after neonatal administration, anticapsid immune responses developed with further injections suggesting immunological ignorance was the initial mechanism of unresponsiveness. CONCLUSIONS: Persistence of transgene protein allows for tolerance induction permitting readministration of AAV to re-establish protein levels that decline with growth.


Assuntos
Dependovirus/genética , Fígado/imunologia , Transgenes , Animais , Animais Recém-Nascidos , Capsídeo , Feminino , Dosagem de Genes , Genes Virais , Terapia Genética/métodos , Vetores Genéticos , Sistema Imunitário , Tolerância Imunológica , Imunidade Celular , Imunidade Humoral , Interferon gama/metabolismo , Interleucina-2/metabolismo , Fígado/metabolismo , Fígado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Fatores de Tempo , Distribuição Tecidual , Vacinas/genética
11.
Stem Cell Reports ; 4(1): 129-142, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25533636

RESUMO

When pluripotency factors are removed, embryonic stem cells (ESCs) undergo spontaneous differentiation, which, among other lineages, also gives rise to cardiac sublineages, including chamber cardiomyocytes and pacemaker cells. Such heterogeneity complicates the use of ESC-derived heart cells in therapeutic and diagnostic applications. We sought to direct ESCs to differentiate specifically into cardiac pacemaker cells by overexpressing a transcription factor critical for embryonic patterning of the native cardiac pacemaker (the sinoatrial node). Overexpression of SHOX2 during ESC differentiation upregulated the pacemaker gene program, resulting in enhanced automaticity in vitro and induced biological pacing upon transplantation in vivo. The accentuated automaticity is accompanied by temporally evolving changes in the effectors and regulators of Wnt signaling. Our findings provide a strategy for enriching the cardiac pacemaker cell population from ESCs.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Proteínas de Homeodomínio/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Nó Sinoatrial/citologia , Nó Sinoatrial/metabolismo , Animais , Eletrofisiologia Cardíaca , Técnicas de Cultura de Células , Transferência Embrionária , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Genes Reporter , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Camundongos , Análise de Célula Única , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...