Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2306980, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38344850

RESUMO

A conceptual shift toward next-generation wearable electronics is driving research into self-powered electronics technologies that can be independently operated without plugging into the grid for external power feeding. Triboelectric nanogenerators (TENGs) are emerging as a key component of self-powered electronics, but a power type mismatch between supply and demand limits their direct implementation into wearable self-powered electronics. Here, a TENG with switchable power mode capability is reported where the charge flow direction is modulated over the course of slow and random mechanical stimuli, with exceptional rectification capabilities as high as ≈133, stable outputs over the cycles, and design flexibility in different platforms. Importantly, the remarkable switchable power generation with fabric counter materials illuminates a new path for the smooth integration of flexible TENGs into wearable self-powered electronics.

2.
Adv Sci (Weinh) ; 11(17): e2308530, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38348594

RESUMO

Rechargeable Li metal batteries have the potential to meet the demands of high-energy density batteries for electric vehicles and grid-energy storage system applications. Achieving this goal, however, requires resolving not only safety concerns and a shortened battery cycle life arising from a combination of undesirable lithium dendrite and solid-electrolyte interphase formations. Here, a series of microcrack-free anionic network polymer membranes formed by a facile one-step click reaction are reported, displaying a high cation conductivity of 3.1 × 10-5 S cm-1 at high temperature, a wide electrochemical stability window up to 5 V, a remarkable resistance to dendrite growth, and outstanding non-flammability. These enhanced properties are attributed to the presence of tethered borate anions in microcrack-free membranes, which benefits the acceleration of selective Li+ cations transport as well as suppression of dendrite growth. Ultimately, the microcrack-free anionic network polymer membranes render Li metal batteries a safe and long-cyclable energy storage device at high temperatures with a capacity retention of 92.7% and an average coulombic efficiency of 99.867% at 450 cycles.

3.
Science ; 379(6629): 278-283, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36656924

RESUMO

Synthesizing many-body quantum systems with various ranges of interactions facilitates the study of quantum chaotic dynamics. Such extended interaction range can be enabled by using nonlocal degrees of freedom such as photonic modes in an otherwise locally connected structure. Here, we present a superconducting quantum simulator in which qubits are connected through an extensible photonic-bandgap metamaterial, thus realizing a one-dimensional Bose-Hubbard model with tunable hopping range and on-site interaction. Using individual site control and readout, we characterize the statistics of measurement outcomes from many-body quench dynamics, which enables in situ Hamiltonian learning. Further, the outcome statistics reveal the effect of increased hopping range, showing the predicted crossover from integrability to ergodicity. Our work enables the study of emergent randomness from chaotic many-body evolution and, more broadly, expands the accessible Hamiltonians for quantum simulation using superconducting circuits.

4.
Genes (Basel) ; 13(10)2022 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36292709

RESUMO

Background: Hypoxic brain injury is a condition caused by restricted oxygen supply to the brain. Several studies have reported cognitive decline, particularly in spatial memory, after exposure to intermittent hypoxia (IH). However, the effect and mechanism of action of IH exposure on cognition have not been evaluated by analyzing gene expression after transcranial direct current stimulation (tDCS). Hence, the purpose of this study was to investigate the effects of tDCS on gene regulation and cognition in a rat model of IH-induced brain injury. Methods: Twenty-four 10-week-old male Sprague−Dawley rats were divided into two groups: IH exposed rats with no stimulation and IH-exposed rats that received tDCS. All rats were exposed to a hypoxic chamber containing 10% oxygen for twelve hours a day for five days. The stimulation group received tDCS at an intensity of 200 µA over the frontal bregma areas for 30 min each day for a week. As a behavior test, the escape latency on the Morris water maze (MWM) test was measured to assess spatial memory before and after stimulation. After seven days of stimulation, gene microarray analysis was conducted with a KEGG mapper tool. Results: Although there were no significant differences between the groups before and after stimulation, there was a significant effect of time and a significant time × group interaction on escape latency. In the microarray analysis, significant fold changes in 12 genes related to neurogenesis were found in the stimulation group after tDCS (p < 0.05, fold change > 2 times, the average of the normalized read count (RC) > 6 times). The highly upregulated genes in the stimulation group after tDCS were SOS, Raf, PI3K, Rac1, IRAK, and Bax. The highly downregulated genes in the stimulation group after tDCS were CHK, Crk, Rap1, p38, Ras, and NF-kB. Conclusion: In this study, we confirmed that SOS, Raf, PI3K, Rac1, IRAK, and Bax were upregulated and that CHK, Crk, Rap1, p38, Ras, and NF-kB were downregulated in a rat model of IH-induced brain injury after application of tDCS.


Assuntos
Lesões Encefálicas , Estimulação Transcraniana por Corrente Contínua , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Proteína X Associada a bcl-2 , NF-kappa B , Hipóxia/genética , Cognição , Oxigênio , Fosfatidilinositol 3-Quinases
5.
Brain Sci ; 12(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35053796

RESUMO

Hypoxic brain injury is accompanied by a decrease in various functions. It is also known that obstructive sleep apnea (OSA) can cause hypoxic brain injury. This study aimed to produce a model of an intermittent hypoxic brain condition in rats and determine the activity of the brain according to the duration of hypoxic exposure. Forty male Sprague-Dawley rats were divided into four groups: the control group (n = 10), the 2 h per day hypoxia exposure group (n = 10), the 4 h per day hypoxia exposure group (n = 10), and the 8 h per day hypoxia exposure group (n = 10). All rats were exposed to a hypoxic chamber containing 10% oxygen for five days. Positron emission tomography-computed tomography (PET-CT) brain images were acquired using a preclinical PET-CT scanner to evaluate the activity of brain metabolism. All the rats were subjected to normal conditions. After five days, PET-CT was performed to evaluate the recovery of brain metabolism. Western blot analysis and immunohistochemistry were performed with vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF). The mean SUV was elevated in the 2 h per day and 4 h per day groups, and all brain regions showed increased metabolism except the amygdala on the left side, the auditory cortex on the right side, the frontal association cortex on the right side, the parietal association cortex on the right side, and the somatosensory cortex on the right side immediately after hypoxic exposure. However, there was no difference between 5 days rest after hypoxic exposure and control group. Western blot analysis revealed the most significant immunoreactivity for VEGF in the 2, 4, and 8 h per day groups compared with the control group and quantification of VEGF immunohistochemistry showed more expression in 2 and 4 h per day groups compared with the control group. However, there was no significant difference in immunoreactivity for BDNF among the groups. The duration of exposure to hypoxia may affect the activity of the brain due to angiogenesis after intermittent hypoxic brain conditions in rats.

6.
Opt Express ; 28(21): 30466-30477, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115047

RESUMO

Blocking the near-infrared region (NIR) is indispensable for saving energy consumed to maintain the interior temperature in buildings. However, simultaneously enhancing transmission in visible light and blocking in the NIR remains challenging. Here, we theoretically demonstrate a transparent all-dielectric metasurface selectively blocking the NIR by using TiO2 nanocylinders and an indium tin oxide (ITO) layer. The ITO layer is implemented as a back reflector because ITO is transparent in visible light, whereas the ITO becomes a reflective material in the long-wavelength region (λ > 1500 nm). The designed metasurface exhibits high average transmittance of 70% in visible light and high solar energy rejection (SER) of 90% in the NIR. Furthermore, the blocking capability in the NIR of the designed metasurface is maintained over a wide range of an incident angle and polarization angle of light. Therefore, the metasurface gives a guideline for designing energy-saving applications.

7.
Brain Res Bull ; 160: 50-55, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32305405

RESUMO

Exercise therapy plays key roles in functional improvements during neurorehabilitation. However, it may be difficult for some people to properly perform exercise because mobility and endurance might be restricted by neurological deficits due to stroke. Additionally, there is little evidence detailing the biological mechanisms underlying the most effective swimming exercise protocols for neuroplasticity after stroke. Thus, the present study investigated the effects of swimming exercise on neuroplasticity in a cerebral infarction rat model according to the timing and intensity of exercise. A total of 45 male Sprague-Dawley rats (300 ±â€¯50 g, 10 weeks old) were subjected to photothrombotic cerebral infarction and randomly divided into five groups: non-exercise (group A, n = 9); early submaximal (group B, n = 9); early maximal (group C, n = 9); late submaximal (group D, n = 9); and late maximal (group E, n = 9). Swimming exercise was performed five times a week for 4 weeks, and cognition was evaluated with the Morris water maze (MWM) test. Assessments of superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels and immunohistochemical analyses of brain-derived neurotrophic factor (BDNF) were conducted in the ipsilesional hippocampus region. After 4 weeks of exercise, the escape latency was shorter and velocity was greater in group B than in groups A, C, D, and E (p = 0.046, p <  0.001, respectively). Furthermore, SOD activity was higher and MDA levels were lower in group B than in groups A, C, D, and E (p = 0.004, p = 0.019). The immunohistochemistry results revealed that the greatest BDNF immunoreactivity was in group B. Taken together, these results indicate that early submaximal swimming exercise may be the most effective protocol for the recovery of neurological deficits in a rat model of cerebral infarction.


Assuntos
Infarto Cerebral/reabilitação , Plasticidade Neuronal/fisiologia , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Natação/fisiologia , Animais , Infarto Cerebral/fisiopatologia , Infarto Cerebral/psicologia , Masculino , Aprendizagem em Labirinto/fisiologia , Condicionamento Físico Animal/psicologia , Ratos , Ratos Sprague-Dawley , Natação/psicologia , Fatores de Tempo
8.
Nature ; 569(7758): 692-697, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31092923

RESUMO

It has long been recognized that atomic emission of radiation is not an immutable property of an atom, but is instead dependent on the electromagnetic environment1 and, in the case of ensembles, also on the collective interactions between the atoms2-6. In an open radiative environment, the hallmark of collective interactions is enhanced spontaneous emission-super-radiance2-with non-dissipative dynamics largely obscured by rapid atomic decay7. Here we observe the dynamical exchange of excitations between a single artificial atom and an entangled collective state of an atomic array9 through the precise positioning of artificial atoms realized as superconducting qubits8 along a one-dimensional waveguide. This collective state is dark, trapping radiation and creating a cavity-like system with artificial atoms acting as resonant mirrors in the otherwise open waveguide. The emergent atom-cavity system is shown to have a large interaction-to-dissipation ratio (cooperativity exceeding 100), reaching the regime of strong coupling, in which coherent interactions dominate dissipative and decoherence effects. Achieving strong coupling with interacting qubits in an open waveguide provides a means of synthesizing multi-photon dark states with high efficiency and paves the way for exploiting correlated dissipation and decoherence-free subspaces of quantum emitter arrays at the many-body level10-13.

9.
Neurol Res ; 41(1): 37-44, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30311868

RESUMO

Objective: This study investigated the effect of regular swimming exercise according to the duration-intensity on neurocognitive function in a cerebral infarction rat model. Methods: Forty male Sprague-Dawley 10-week-old rats, weighing 300 ± 50 g, were subjected to photothrombotic cerebral infarction. The remaining 36 rats were randomly divided into four groups (n = 9 per group: non-exercise (group A); swimming exercise of short duration-intensity (5 min/day, group B); swimming exercise of moderate duration-intensity (10 min/day, group C); and swimming exercise of long duration-intensity (20 min/day, group D). Exercise was performed five times a week for 4 weeks, beginning the day after cerebral infarction. Neurocognitive function was evaluated with the Morris water maze test. Immunohistochemistry and western blot analysis examined brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) at 4 weeks postinfarction. Results: At 4 weeks postinfarction, escape latency was found to be shorter in group C than in any of groups A, B, or D. Immunohistochemistry revealed the most significant immunoreactivity for BDNF and VEGF in group C. Western blot analysis demonstrated that BDNF and VEGF proteins were markedly expressed in group C. Conclusions: Regular swimming exercise of moderate duration-intensity may be the most effective exercise protocol for the recovery of neurocognitive function in cerebral infarction rat model.


Assuntos
Infarto Cerebral/metabolismo , Infarto Cerebral/terapia , Cognição/fisiologia , Terapia por Exercício , Hipocampo/metabolismo , Natação/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Infarto Cerebral/patologia , Infarto Cerebral/psicologia , Modelos Animais de Doenças , Hipocampo/patologia , Masculino , Aprendizagem em Labirinto/fisiologia , Distribuição Aleatória , Ratos Sprague-Dawley , Natação/psicologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Nat Commun ; 9(1): 3706, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209270

RESUMO

Embedding tunable quantum emitters in a photonic bandgap structure enables control of dissipative and dispersive interactions between emitters and their photonic bath. Operation in the transmission band, outside the gap, allows for studying waveguide quantum electrodynamics in the slow-light regime. Alternatively, tuning the emitter into the bandgap results in finite-range emitter-emitter interactions via bound photonic states. Here, we couple a transmon qubit to a superconducting metamaterial with a deep sub-wavelength lattice constant (λ/60). The metamaterial is formed by periodically loading a transmission line with compact, low-loss, low-disorder lumped-element microwave resonators. Tuning the qubit frequency in the vicinity of a band-edge with a group index of ng = 450, we observe an anomalous Lamb shift of -28 MHz accompanied by a 24-fold enhancement in the qubit lifetime. In addition, we demonstrate selective enhancement and inhibition of spontaneous emission of different transmon transitions, which provide simultaneous access to short-lived radiatively damped and long-lived metastable qubit states.

11.
Asian-Australas J Anim Sci ; 29(5): 753-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26954138

RESUMO

Moisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method. A broad range of oxygen uptake rates (0.3 to 33.3 mg O2/g VS d) were monitored as a function of moisture level and composting feedstock type. The maximum oxygen consumption of each material was observed near the saturated condition, which ranged from 75% to 98% of water holding capacity. The optimum moisture content of BS and BR were 70% and 57% on a wet basis, respectively. Although BS's optimum moisture content was near saturated state, its free air space kept a favorable level (above 30%) for aerobic composting due to the sawdust's coarse particle size and bulking effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...