Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6225, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043671

RESUMO

The deep ocean, a vast thermal reservoir, absorbs excess heat under greenhouse warming, which ultimately regulates the Earth's surface climate. Even if CO2 emissions are successfully reduced, the stored heat will gradually be released, resulting in a particular pattern of ocean warming. Here, we show that deep ocean warming will lead to El Niño-like ocean warming and resultant increased precipitation in the tropical eastern Pacific with southward shift of the intertropical convergence zone. Consequently, the El Niño-Southern Oscillation shifts eastward, intensifying Eastern Pacific El Niño events. In particular, the deep ocean warming could increase convective extreme El Niño events by 40 to 80% relative to the current climate. Our findings suggest that anthropogenic greenhouse warming will have a prolonged impact on El Niño variability through delayed deep ocean warming, even if CO2 stabilization is achieved.

2.
Materials (Basel) ; 16(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38068073

RESUMO

This study delves into the atmospheric corrosion behavior of chromium-free complex-phase (CP) steel, specifically investigating the influence of wet/dry frequency and ratio in cyclic corrosion tests (CCT). The study employs a modified ISO 14993 standard CCT method, which involves salt spray, dry, and wet stages. After 15 and 30 CCT cycles, mass loss, maximum corrosion depth, and corrosion products were analyzed to gain insights into corrosion mechanisms. In general, increasing the frequency and wet/dry stage ratio in CCT extends the time for autocatalytic reactions to occur, leading to accelerated localized CP steel corrosion and increased pitting factors. However, as the rust layer thickens, uniform corrosion may also intensify, so careful considerations are necessary. This study underscores the importance of controlling the frequency and ratio of wet/dry stages in CCT for effectively analyzing localized corrosion behavior in specimens.

3.
Materials (Basel) ; 16(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37109969

RESUMO

The automobile industry commonly uses cyclic corrosion tests (CCTs) to evaluate the durability of materials. However, the extended evaluation period required by CCTs can pose challenges in this fast-paced industry. To address this issue, a new approach that combines a CCT with an electrochemically accelerated corrosion test has been explored, to shorten the evaluation period. This method involves the formation of a corrosion product layer through a CCT, which leads to localized corrosion, followed by applying an electrochemically accelerated corrosion test using an agar gel electrolyte to preserve the corrosion product layer as much as possible. The results indicate that this approach can achieve comparable localized corrosion resistance, with similar localized corrosion area ratios and maximum localized corrosion depths to those obtained through a conventional CCT in half the time.

4.
Materials (Basel) ; 15(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35591740

RESUMO

This study investigated the hydrogen embrittlement (HE) characteristics of advanced high-strength steels (AHSSs). Two different types of AHSSs with a tensile strength of 1.2 GPa were investigated. Slow strain rate tests (SSRTs) were performed under various applied potentials (Eapp) to identify the mechanism with the greatest effect on the embrittlement of the specimens. The SSRT results revealed that, as the Eapp increased, the elongation tended to increase, even when a potential exceeding the corrosion potential was applied. Both types of AHSSs exhibited embrittled fracture behavior that was dominated by HE. The fractured SSRT specimens were subjected to a thermal desorption spectroscopy analysis, revealing that diffusible hydrogen was trapped mainly at the grain boundaries and dislocations (i.e., reversible hydrogen-trapping sites). The micro-analysis results revealed that the poor HE resistance of the specimens was attributed to the more reversible hydrogen-trapping sites.

5.
Materials (Basel) ; 15(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269107

RESUMO

In this study, the cause of failure of a low-carbon steel pipe meeting standard KS D 3562 (ASTM A135), in a district heating system was investigated. After 6 years of operation, the pipe failed prematurely due to pitting corrosion, which occurred both inside and outside of the pipe. Pitting corrosion occurred more prominently outside the pipe than inside, where water quality is controlled. The analysis indicated that the pipe failure occurred due to aluminum inclusions and the presence of a pearlite inhomogeneous phase fraction. Crevice corrosion occurred in the vicinity around the aluminum inclusions, causing localized corrosion. In the large pearlite fraction region, cementite in the pearlite acted as a cathode to promote dissolution of surrounding ferrite. Therefore, in the groundwater environment outside of the pipe, localized corrosion occurred due to crevice corrosion by aluminum inclusions, and localized corrosion was accelerated by the large fraction of pearlite around the aluminum inclusions, leading to pipe failure.

6.
Science ; 374(6563): eaay9165, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34591645

RESUMO

Climate variability in the tropical Pacific affects global climate on a wide range of time scales. On interannual time scales, the tropical Pacific is home to the El Niño­Southern Oscillation (ENSO). Decadal variations and changes in the tropical Pacific, referred to here collectively as tropical Pacific decadal variability (TPDV), also profoundly affect the climate system. Here, we use TPDV to refer to any form of decadal climate variability or change that occurs in the atmosphere, the ocean, and over land within the tropical Pacific. "Decadal," which we use in a broad sense to encompass multiyear through multidecadal time scales, includes variability about the mean state on decadal time scales, externally forced mean-state changes that unfold on decadal time scales, and decadal variations in the behavior of higher-frequency modes like ENSO.

7.
Med Phys ; 46(11): 5238-5248, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31442302

RESUMO

PURPOSE: Micrometer spatial resolution dosimetry has become inevitable for advanced radiotherapy techniques. A new approach using radiochromic films was developed to measure a radiation dose at a micrometer spatial resolution by confocal Raman spectroscopy. METHODS: The commercial radiochromic films (RCF), EBT3 and EBT-XD, were irradiated with known doses using 50, 100, 200, and 300 kVp, and 6-MV x rays. The dose levels ranged from 0.3 to 50 Gy. The Raman mapping technique developed in our early study was used to readout an area of 100 × 100 µm2 on RCF with improved lateral and depth resolutions with confocal Raman spectrometry. The variation in Raman spectra of C-C-C deformation and C≡C stretching modes of diacetylene polymers around 676 and 2060 cm-1 , respectively, as a function of therapeutic x-ray doses, was measured. The single peak (SP) of C≡C and the peak ratio (PR) of C≡C band height to C-C-C band height with a spatial resolution of 10 µm on both types of RCF were evaluated, averaged, and plotted as a function of dose. An achievable spatial resolution, clinically useful dose range, dosimetric sensitivity, dose uniformity, and postirradiation stability as well as the orientation, energy, and dose rate dependence, of both types of RCFs, were characterized by the technique developed in this study. RESULTS: A spatial resolution on RCF achieved by SP and PR methods was ~4.5 and ~2.9 µm, respectively. Raman spectroscopy data showed dose nonuniformity of ~11% in SP method and <3% in PR method. The SP method provided dose ranges of up to ~10 and ~20 Gy for EBT3 and EBT-XD films, respectively while the PR method up to ~30 and ~50 Gy. The PR method diminished the orientation effect. The percent difference between landscape and portrait orientations for the EBT3 and the EBT-XD films at 4 Gy had an acceptable level of 1.2% and 2.4%, respectively. With both SP and PR methods, the EBT3 and the EBT-XD films showed weak energy (within ~10% and ~3% for SP and PR methods, respectively) and dose rate dependence (within ~5% and ~3% for SP and PR methods, respectively) and had a stable response after 24-h postirradiation. CONCLUSIONS: A technique for micrometer-resolution dosimetry was successfully developed by detecting radiation-induced Raman shift on EBT3 and EBT-XD. Both types of RCFs were suitable for micrometer-resolution dosimetry using CRS. With CRS both lateral and depth resolutions on RCF were improved. The PR method provided superior characteristics in dose uniformity, dose ranges, orientation dependence, and laser effect for both types of RCFs. The overall dosimetric characteristics of the RCFs determined by this technique were similar to those known by optical density scanning. The CRS with the PR method is advantageous over other the traditional scanning systems as a spatial resolution of <10 µm on RCF can be achieved with less deviations.


Assuntos
Dosimetria Fotográfica/instrumentação , Análise Espectral Raman , Calibragem , Razão Sinal-Ruído
8.
Science ; 363(6430)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30819937

RESUMO

The El Niño-Southern Oscillation (ENSO), which originates in the Pacific, is the strongest and most well-known mode of tropical climate variability. Its reach is global, and it can force climate variations of the tropical Atlantic and Indian Oceans by perturbing the global atmospheric circulation. Less appreciated is how the tropical Atlantic and Indian Oceans affect the Pacific. Especially noteworthy is the multidecadal Atlantic warming that began in the late 1990s, because recent research suggests that it has influenced Indo-Pacific climate, the character of the ENSO cycle, and the hiatus in global surface warming. Discovery of these pantropical interactions provides a pathway forward for improving predictions of climate variability in the current climate and for refining projections of future climate under different anthropogenic forcing scenarios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...