Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(8): e0182610, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28787462

RESUMO

A new ovarian near-diploid cell line, OVDM1, was derived from a highly aneuploid serous ovarian metastatic adenocarcinoma. A metastatic tumor was obtained from a 47-year-old Ashkenazi Jewish patient three years after the first surgery removed the primary tumor, both ovaries, and the remaining reproductive organs. OVDM1 was characterized by cell morphology, genotyping, tumorigenic assay, mycoplasma testing, spectral karyotyping (SKY), and molecular profiling of the whole genome by aCGH and gene expression microarray. Targeted sequencing of a panel of cancer-related genes was also performed. Hierarchical clustering of gene expression data clearly confirmed the ovarian origin of the cell line. OVDM1 has a near-diploid karyotype with a low-level aneuploidy, but samples of the original metastatic tumor were grossly aneuploid. A number of single nucleotide variations (SNVs)/mutations were detected in OVDM1 and the metastatic tumor samples. Some of them were cancer-related according to COSMIC and HGMD databases (no founder mutations in BRCA1 and BRCA2 have been found). A large number of focal copy number alterations (FCNAs) were detected, including homozygous deletions (HDs) targeting WWOX and GATA4. Progression of OVDM1 from early to late passages was accompanied by preservation of the near-diploid status, acquisition of only few additional large chromosomal rearrangements and more than 100 new small FCNAs. Most of newly acquired FCNAs seem to be related to localized but massive DNA fragmentation (chromothripsis-like rearrangements). Newly developed near-diploid OVDM1 cell line offers an opportunity to evaluate tumorigenesis pathways/events in a minor clone of metastatic ovarian adenocarcinoma as well as mechanisms of chromothripsis.


Assuntos
Aneuploidia , Linhagem Celular Tumoral , Diploide , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Adulto , Animais , Transformação Celular Neoplásica , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Genômica , Humanos , Camundongos , Metástase Neoplásica , Estadiamento de Neoplasias
2.
Genes Chromosomes Cancer ; 53(6): 467-74, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24585545

RESUMO

Primary IGH translocations involving seven recurrent partner loci and oncogenes are present in about 40% of multiple myeloma tumors. Secondary IGH rearrangements, which occur in a smaller fraction of tumors, usually are complex structures, including insertions or translocations that can involve three chromosomes, and often with involvement of MYC. The main approach to detect IGH rearrangements is interphase-but sometimes metaphase-FISH strategies that use a telomeric variable region probe and a centromeric constant region/ Eα enhancer or 3' flanking probe to detect a separation of these two probes, or a fusion of these probes with probes located at nonrandom partner sites in the genome. We analyzed 18 myeloma cell lines for detection discrepancies among Vysis, Cytocell, and in-house IGH probe sets that hybridize with differing sequences in the IGH locus. There were no detection discrepancies for the three telomeric IGH probes, or for unrearranged IGH loci or primary IGH translocations using the centromeric IGH probes. However, the majority of complex IGH rearrangements had detection discrepancies among the three centromeric IGH probes.


Assuntos
Sondas de DNA/química , Rearranjo Gênico , Cadeias Pesadas de Imunoglobulinas/genética , Mieloma Múltiplo/genética , Linhagem Celular Tumoral , Cromossomos Humanos/genética , Humanos , Hibridização in Situ Fluorescente , Interfase , Mieloma Múltiplo/patologia , Mutagênese Insercional , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...