Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36676402

RESUMO

In this study, the deformation of concrete materials was evaluated using a mechanochromic sensor that detects the discoloration reaction caused by deformation. This sensor was attached by applying the Loctite adhesive to both ends in the longitudinal direction. The process of applying tensile stress to the specimens was videotaped, and the deformation and discoloration were examined through image analysis. The mechanochromic sensor was not affected by the finished surface condition, and the discoloration reaction was detected for a concrete material deformation level of up to 0.01 mm. The detected level was caused by the elongation of the sensor, and the discoloration compared with the initial color was identified. In addition, the integration behavior of the mechanochromic sensor under the deterioration of concrete members in cold areas and winter environments, as well as the discoloration reaction of the sensor in a low-temperature environment, was examined. It was found that the discoloration ability of the mechanochromic sensor exposed to a low-temperature environment was restored in 2 h after the end of the freeze-thaw test, and it was judged that the deformation and discoloration levels will be properly measured when the surface temperature of the sensor is restored to a room temperature of approximately 15 °C. This appeared to be due to the room temperature recovery of the dielectric spacer of the sensor and the deformation structure of the resonance condition. The sensor was also attached when diagonal cracks occurred in the concrete beam members to evaluate the strain and discoloration rate according to the deformation and discoloration levels. Accordingly, the cracks and deformation of the concrete materials were monitored using measured values from the discoloration of the mechanochromic sensors, and the possibility of measuring the crack width was reviewed only by real-time monitoring and imaging with the naked eye.

2.
Materials (Basel) ; 15(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35407827

RESUMO

In this study, the effect of fine blast furnace slag powder (SP) and limestone powder (LSP) as a mineral admixture in shotcrete using monocalcium aluminate (CA) as a quick-setting accelerator was evaluated. The shotcrete was prepared with up to 25 wt.% substitutions of mineral admixture, i.e., (SP and LSP), and then the CA accelerator was incorporated by 5 wt.% of binders. To examine the optimal mixing ratio for mineral admixture in shotcrete, penetration resistance, compressive strength, XRD analysis, and MIP analysis were performed on the mortar. On the other hand, compressive strength test, chloride diffusion coefficient, and freeze-thaw resistance were conducted on concrete to evaluate the field applicability of shotcrete. The study revealed the addition of LSP improved setting time and early compressive strength while the addition of SP increased long-term compressive strength. With the addition of both SP and LSP, the early and long-term strength was increased due to the influence of the properties of each admixture. Furthermore, the addition of SP and LSP improves the resistance of shotcrete to chloride ions and freeze-thaw.

3.
Materials (Basel) ; 14(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34832451

RESUMO

In this study, high-strength concrete containing hooked-end steel or amorphous metallic fibers was fabricated, and the electrical conductivity and electromagnetic shielding effectiveness were evaluated after 28 and 208 days based on considerations of the influences of the moisture content. Amorphous metallic fibers, which have the same length and length/equivalent diameter ratio as hooked-end steel fibers, were favored for the formation of a conductive network because they can be added in large quantities owing to their low densities. These fibers have a large specific surface area as thin plates. The electromagnetic shielding effectiveness clearly improved as the electrical conductivity increased, and it can be expected that the shielding effectiveness will approach the saturation level when the fiber volume fraction of amorphous metallic fibers exceeds 0.5 vol.%. Meanwhile, it is necessary to reduce the amount of moisture to conservatively evaluate the electromagnetic shielding performance. In particular, when 0.5 vol.% of amorphous metallic fibers was added, a shielding effectiveness of >80 dB (based on a thickness of 300 mm) was achieved at a low moisture content after 208 days. Similar to the electrical conductivity, excellent shielding effectiveness can be expected from amorphous metallic fibers at low contents compared to that provided by hooked-end steel fibers.

4.
Materials (Basel) ; 14(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34640078

RESUMO

Wave power marine concrete structures generate electrical energy using waves. They are exposed to a multi-deterioration environment because of air and hydrostatic pressure and chloride attack. In this study, the effect of air pressure repeatedly generated by water level change of wave power marine concrete structures on the chloride-ion diffusion of marine concrete was analyzed. The chloride-ion diffusion of wave power marine concrete structures was evaluated. The results show that the air chamber and bypass room, which were subjected to repetitive air pressures caused by water level changes, showed a higher water-soluble chloride-ion content compared to the generator room and docking facility, which were subjected to atmospheric pressure. Field exposure tests and indoor chloride attack tests were performed using fabricated specimens to analyze the effect of pressure on chloride-ion penetration. It was confirmed that Portland blast furnace slag had a greater inhibitory effect on chloride-ion penetration than ordinary Portland cement. The concrete specimens subjected to pressure showed increased capillary pores and micro-cracks. We devised an equation for calculating the diffusion coefficient based on measured data and estimating the diffusion coefficient for the location receiving repeated air pressure by using the diffusion coefficient of the location receiving general atmospheric pressure.

5.
Materials (Basel) ; 14(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34683616

RESUMO

In this study, the effects of heating rate and compressive strength on the spalling behavior of single-sided heated ring-restrained concrete with compressive strengths of 60 and 100 MPa were investigated. The vapor pressure and restrained stress inside the concrete were evaluated under fast- and slow-heating conditions. Regardless of the heating rate, the concrete vapor pressure and restrained stress increased as the temperature increased, and it was confirmed that spalling occurred in the 100-MPa concrete. Specifically, it was found that moisture migration and restrained stress inside the concrete varied depending on the heating rate. Under fast heating, moisture clogging and restrained stress occurred across the concrete surface, causing continuous surface spalling for the 100-MPa concrete. Under slow heating, moisture clogging occurred, and restrained stress continuously increased in the deep area of the concrete cross-section owing to the small internal temperature difference, resulting in explosive spalling for the 100-MPa concrete with a dense internal structure. Additionally, while the tensile strength of concrete is reduced by heating, stress in the heated surface direction is generated by restrained stress. The combination of stress in the heated concrete surface and the internal vapor pressure generates spalling. The experimental results confirm that heating rate has a significant influence on moisture migration and restrained stress occurrence inside concrete, which are important factors that determine the type of spalling.

6.
Materials (Basel) ; 14(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34501118

RESUMO

Concrete undergoes shrinkage regardless of the influence of external forces. The deformation of concrete is crucial for the structural stability of high-rise and large-scale buildings. In this study, the shrinkage and compressive creep of 70-90 MPa high-strength concrete used in high-rise buildings were evaluated based on the curing conditions (sealed/unsealed), and the existing prediction models were examined. It was observed that the curing condition does not significantly affect the mechanical properties of high-strength concrete, but the use of limestone coarse aggregate increases the elastic modulus when compared to granite coarse aggregate. The autogenous shrinkage of high-strength concrete is greater than that of normal-strength concrete owing to self-desiccation, resulting in a large variation from the value predicted by the model. The drying shrinkage was observed to be similar to that predicted by the model. Compressive creep was affected by the curing conditions, compressive strength, loading level, and loading age. The compressive creep of high-strength concrete varied significantly from the prediction results of ACI 209; ACI 209 was modified based on the measured values. The shrinkage and compressive creep characteristics of high-strength concrete must be reflected to predict the deformation of an actual structure exposed to various conditions.

7.
Materials (Basel) ; 14(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34443026

RESUMO

In this study, a high-performance hybrid fiber-reinforced cementitious composite (HP-HFRCC) was prepared, by mixing hooked steel fiber (HSF) and smooth steel fiber (SSF) at different blending ratios, to evaluate the synergistic effect of the blending ratio between HSF and SSF and the strain rate on the tensile properties of HP-HFRCC. The experimental results showed that the micro- and macrocrack control capacities of HP-HFRCC varied depending on the blending ratio and strain rate, and the requirement for deriving the appropriate blending ratio was confirmed. Among the HP-HFRCC specimens, the specimen mixed with HSF 1.0 vol.% and SSF 1.0 vol.% (H1.0S1.0) exhibited a significant increase in the synergistic effect on the tensile properties at the high strain rate, as SSF controlled the microcracks and HSF controlled the macrocracks. Consequently, it exhibited the highest strain rate sensitivities of tensile strength, strain capacity, and peak toughness among the specimens evaluated in this study.

8.
Materials (Basel) ; 13(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899399

RESUMO

In this study, an alkaline activator was synthesized by dissolving waste glass powder (WGP) in NaOH-4M solution to explore its effects on the formation of alkali-activated material (AAM) generated by Class-C fly ash (FA) and ground granulated blast furnace slag (GGBS). The compressive strength, flexure strength, porosity and water absorption were measured, and X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive X-ray (SEM-EDX) were used to study the crystalline phases, hydration mechanism and microstructure of the resulting composites. Results indicated that the composition of alkali solutions and the ratios of FA/GGBS were significant in enhancing the properties of the obtained AAM. As the amount of dissolved WGP increased in alkaline solution, the silicon concentration increased, causing the accelerated reactivity of FA/GGBS to develop Ca-based hydrate gel as the main reaction product in the system, thereby increasing the strength and lowering the porosity. Further increase in WGP dissolution led to strength loss and increased porosity, which were believed to be due to the excessive water demand of FA/GGBS composites to achieve optimum mixing consistency. Increasing the GGBS proportion in a composite appeared to improve the strength and lower the porosity owing to the reactivity of GGBS being higher than that of FA, which contributed to develop C-S-H-type hydration.

9.
Materials (Basel) ; 13(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867379

RESUMO

The prevention and mitigation of spalling in high-strength concrete (HSC) rely on mixing polypropylene (PP) as an additive reinforcement. The dense internal structures of ultra-high-strength concrete (UHSC) result in risks associated with a high thermal stress and high water vapor pressure. Herein, the effects of pore formation and thermal strain on spalling are examined by subjecting fiber-laden UHSC to conditions similar to those under which the ISO-834 standard fire curve was obtained. Evaluation of the initial melting properties of the fibers based on thermogravimetric analysis (TGA) and differential thermal analysis (DTA) demon strated that although nylon fibers exhibit a higher melting point than polypropylene and polyethylene fibers, weight loss occurs below 200 °C. Nylon fibers were effective at reducing spalling in UHSC compared to polypropylene and polyethylene fibers as they rapidly melt, leading to pore formation. We anticipate that these results will serve as references for future studies on the prevention of spalling in fiber-reinforced UHSC.

10.
Materials (Basel) ; 13(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150941

RESUMO

Accelerated corrosion tests of reinforced concrete (RC) specimens were conducted to estimate the corrosion expansion rate of reinforcing bars. Subsequently, finite element analysis was performed with the estimated expansion rate for RC beams to investigate concrete cracking induced by corrosion. The influence of the different confinement levels on crack behavior was investigated using mainly the amount of transverse reinforcement. An expansion rate of 2 was found to be appropriate when using Lundgren's expansion model. Confinement levels affected the cracking behavior of steel bars. Cracks did not significantly affect structural capacity although they exceeded the allowable crack width. Nevertheless, repair and reinforcement measures are necessary because degrading durability factors such as carbonation or salt diffusion can reach the reinforcing bars through connected cracks.

11.
Materials (Basel) ; 13(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31877654

RESUMO

In this paper, class-C fly ash (FA) and ground granulated blast-furnace slag (GGBS)-based geopolymer activated in NaOH and NaOH + Na2SiO3 was studied regarding setting time, compressive strength, porosity, microstructure, and formation of crystalline phases. When comparing the effects of alkali type on the FA and GGBS geopolymer composites, results revealed that NaOH has a lesser effect in developing strength and denser microstructure than does NaOH + Na2SiO3, since the addition of Na2SiO3 provides the silica source to develop more compact structure. Incorporation of Na2SiO3 reduced the crystallinity and the paste was more amorphous compared to NaOH activated pastes. The class-C FA and GGBS blends resulted in prolonged setting time, reduced strength, and loose matrix with the increase in fly ash content. The un-reactivity of calcium in blends was observed with increasing fly ash content, leading to strength loss. It is evident from XRD patterns that calcium in fly ash did not contribute in forming C-S-H bond, but formation of crystalline calcite was observed. Furthermore, XRD analyses revealed that the reduction in fly ash leads to the reduction in crystallinity, and SEM micrographs showed the unreactive fly ash particles, which hinder the formation of a denser matrix.

12.
Materials (Basel) ; 12(19)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547072

RESUMO

This study aims to analyze the engineering properties of cementless grouting materials (CGMs) and derive optimal binder types and compositions that can ensure superior material performance in comparison with ordinary Portland cement (OPC). The presented CGM is an environment-friendly inorganic binder based on ground granulated blast-furnace slag. The material properties of three CGM types with different chemical compositions were evaluated. To assess the possibility of using CGMs in grouting-construction methods, this study followed special grouting-method specifications of the J company in Korea, and tested whether CGM satisfies the performance requirements of a gel time of 20-50 s and homogel strength greater than 2 MPa after 7 days. For OPC and CGM, gel time increased and homogel strength decreased as the water/binder (W/B) ratio of Liquid B increased or as its replacement ratio decreased. Additionally, gel time decreased while homogel strength increased as the absolute weight of the Liquid B binder increased, and a negative correlation was observed between gel time and homogel strength. CGM2 was the optimal binder to ensure excellent material performance compared with OPC. Optimal mixing proportions were 117.8-167.7% W/B ratio, 42.6-56.7% Liquid B volume ratio, and 20.4-43.7 kg binder weight.

13.
Materials (Basel) ; 12(1)2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621008

RESUMO

This study focused on the quick initial setting time and the expansion strain that occurs during the early aging of α-calcium sulfate hemihydrate (αHH) and examined the setting, compressive strength, and shrinkage strain of αHH-replaced cement mortar. The results show that the initial setting time significantly decreased with an increase in the αHH replacement ratio. Drastic occurrence of ettringite was observed early in the aging of cement mortar when αHH was substituted into the cement; however, the ettringite was not converted to monosulfate with increasing age and thus was not favorable for the development of the compressive strength. When αHH was substituted into cement, using Portland blast-furnace slag cement (PSC) was more advantageous than using ordinary Portland cement (OPC) for the development of the compressive strength. Meanwhile, the expansion of early age αHH can decrease the shrinkage strain of cement mortar. The generation of ettringite is more effective when αHH is substituted into PSC than into OPC and is thus more effective in suppressing the shrinkage strain.

14.
Materials (Basel) ; 11(3)2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29522479

RESUMO

This study evaluates the fracture properties and rear-face strain distribution of nonreinforced and hooked steel fiber-reinforced concrete panels penetrated by projectiles of three different nose shapes: sharp, hemispherical, and flat. The sharp projectile nose resulted in a deeper penetration because of the concentration of the impact force. Conversely, the flat projectile nose resulted in shallower penetrations. The penetration based on different projectile nose shapes is directly related to the impact force transmitted to the rear face. Scabbing can be more accurately predicted by the tensile strain on the rear face of concrete due to the projectile nose shape. The tensile strain on the rear face of the concrete was reduced by the hooked steel fiber reinforcement because the hooked steel fiber absorbed some of the impact stress transmitted to the rear face of the concrete. Consequently, the strain behavior on the rear face of concrete according to the projectile nose shape was confirmed.

15.
Materials (Basel) ; 10(7)2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28773144

RESUMO

Strain is generated in concrete subjected to elevated temperatures owing to the influence of factors such as thermal expansion and design load. Such strains resulting from elevated temperatures and load can significantly influence the stability of a structure during and after a fire. In addition, the lower the water-to-binder (W-B) ratio and the smaller the quantity of aggregates in high-strength concrete, the more likely it is for unstable strain to occur. Hence, in this study, the compressive strength, elastic modulus, and creep behavior were evaluated at target temperatures of 100, 200, 300, 500, and 800 °C for high-strength concretes with W-B ratios of 30%, 26%, and 23%. The loading conditions were set as non-loading and 0.33fcu. It was found that as the compressive strength of the concrete increased, the mechanical characteristics deteriorated and transient creep increased. Furthermore, when the point at which creep strain occurred at elevated temperatures after the occurrence of transient creep was considered, greater shrinkage strain occurred as the compressive strength of the concrete increased. At a heating temperature of 800 °C, the 80 and 100 MPa test specimens showed creep failure within a shrinkage strain range similar to the strain at the maximum load.

16.
Materials (Basel) ; 9(3)2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-28773256

RESUMO

This paper presents an experimental study conducted to investigate the effect of fiber reinforcement on the mechanical properties and shrinkage cracking of recycled fine aggregate concrete (RFAC) with two types of fiber-polyvinyl alcohol (PVA) and nylon. A small fiber volume fraction, such as 0.05% or 0.1%, in RFAC with polyvinyl alcohol or nylon fibers was used for optimum efficiency in minimum quantity. Additionally, to make a comparative evaluation of the mechanical properties and shrinkage cracking, we examined natural fine aggregate concrete as well. The test results revealed that the addition of fibers and fine aggregates plays an important role in improving the mechanical performance of the investigated concrete specimens as well as controlling their cracking behavior. The mechanical properties such as compressive strength, splitting tensile strength, and flexural strength of fiber-reinforced RFAC were slightly better than those of non-fiber-reinforced RFAC. The shrinkage cracking behavior was examined using plat-ring-type and slab-type tests. The fiber-reinforced RFAC showed a greater reduction in the surface cracks than non-fiber-reinforced concrete. The addition of fibers at a small volume fraction in RFAC is more effective for drying shrinkage cracks than for improving mechanical performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...