Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Mol Med ; 56(5): 1221-1229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38816566

RESUMO

Mouse models expressing human ACE2 for coronavirus disease 2019 have been frequently used to understand its pathogenesis and develop therapeutic strategies against SARS-CoV-2. Given that human TMPRSS2 supports viral entry, replication, and pathogenesis, we established a double-transgenic mouse model expressing both human ACE2 and TMPRSS2 for SARS-CoV-2 infection. Co-overexpression of both genes increased viral infectivity in vitro and in vivo. Double-transgenic mice showed significant body weight loss, clinical disease symptoms, acute lung injury, lung inflammation, and lethality in response to viral infection, indicating that they were highly susceptible to SARS-CoV-2. Pretreatment with the TMPRSS2 inhibitor, nafamostat, effectively reduced virus-induced weight loss, viral replication, and mortality in the double-transgenic mice. Moreover, the susceptibility and differential pathogenesis of SARS-CoV-2 variants were demonstrated in this animal model. Together, our results demonstrate that double-transgenic mice could provide a highly susceptible mouse model for viral infection to understand SARS-CoV-2 pathogenesis and evaluate antiviral therapeutics against coronavirus disease 2019.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Modelos Animais de Doenças , Camundongos Transgênicos , SARS-CoV-2 , Serina Endopeptidases , Animais , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , COVID-19/virologia , COVID-19/genética , COVID-19/metabolismo , SARS-CoV-2/fisiologia , SARS-CoV-2/genética , Humanos , Camundongos , Replicação Viral , Benzamidinas , Guanidinas/farmacologia , Chlorocebus aethiops , Tratamento Farmacológico da COVID-19
2.
Curr Oncol ; 30(12): 10450-10462, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38132395

RESUMO

Enigma protein, encoded by the PDLIM7 gene, is overexpressed in thyroid cancer in a stage-dependent manner, suggesting a potential involvement in the initiation and progression of thyroid cancer. The Enigma interacts with several cellular pathways, including PI3K/AKT, MDM2, and BMP-1. The Enigma is regulated by microRNAs. Specifically, we showed that the Enigma protein upregulation corresponds to the downregulation of Let-7 family genes. There is limited research on the interactions and regulation of the Enigma with other proteins/genes in thyroid cancer tissues, indicating a gap in current knowledge. Our aim is to establish the Enigma as a biomarker. We also aim to study the interacting partners of the Enigma signaling pathways and their probable miRNA regulation in thyroid cancer progression. Using Western blotting, densitometric analysis, immunoprecipitation (IP), and reverse IP, we detected the protein expression and protein-protein interactions in the corresponding papillary thyroid carcinomas (PTCs). Utilizing real-time qPCR assay and Pearson's correlation test, we highlighted the correlation between PDLIM7 and Let-7g gene expression in the same tissues. The results showed the differential upregulations of the Enigma protein in different stages of PTCs compared to benign tissues along with AKT, VDR, BMP-1, and MDM2 proteins. Loss of DBP was observed in a subset of PTCs. Strong interactions of the Enigma with PI3K/AKT and MDM2 were noted, along with a weaker BMP-1 interaction. Pearson's correlation coefficient analysis between PDLIM7 and let-7g gene expression was significant (p < 0.05); however, there was a weak inverse correlation (r = -0.27). The study suggests the potential utility of the PDLIM7-qPCR assay as a biomarker for thyroid cancer. The Enigma's interactions with key signaling pathways may provide valuable insights into the development of thyroid cancer. The study contributes to understanding the molecular mechanisms involving the Enigma protein in thyroid cancer and highlights its potential as a biomarker.


Assuntos
Proteínas com Domínio LIM , MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Biomarcadores , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Proteínas com Domínio LIM/genética
3.
Int J Biol Sci ; 17(14): 3786-3794, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671199

RESUMO

COVID-19, caused by a novel coronavirus, SARS-CoV-2, poses a serious global threat. It was first reported in 2019 in China and has now dramatically spread across the world. It is crucial to develop therapeutics to mitigate severe disease and viral spread. The receptor-binding domains (RBDs) in the spike protein of SARS-CoV and MERS-CoV have shown anti-viral activity in previous reports suggesting that this domain has high potential for development as therapeutics. To evaluate the potential antiviral activity of recombinant SARS-CoV-2 RBD proteins, we determined the RBD residues of SARS-CoV-2 using a homology search with RBD of SARS-CoV. For efficient expression and purification, the signal peptide of spike protein was identified and used to generate constructs expressing recombinant RBD proteins. Highly purified RBD protein fused with the Fc domain of human IgG showed potent anti-viral efficacy, which was better than that of a protein fused with a histidine tag. Intranasally pre-administrated RBD protein also inhibited the attachment of SARS-COV-2 to mouse lungs. These findings indicate that RBD protein could be used for the prevention and treatment of SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/uso terapêutico , Ligação Viral/efeitos dos fármacos , Administração Intranasal , Sequência de Aminoácidos , Animais , Sítios de Ligação , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Domínios Proteicos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Glicoproteína da Espícula de Coronavírus/biossíntese , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/farmacologia , Células Vero
4.
Microorganisms ; 9(3)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800763

RESUMO

Zika virus (ZIKV), which is associated with severe diseases in humans, has spread rapidly and globally since its emergence. ZIKV and dengue virus (DENV) are closely related, and antibody-dependent enhancement (ADE) of infection between cocirculating ZIKV and DENV may exacerbate disease. Despite these serious threats, there are currently no approved antiviral drugs against ZIKV and DENV. The NS2B-NS3 viral protease is an attractive antiviral target because it plays a pivotal role in polyprotein cleavage, which is required for viral replication. Thus, we sought to identify novel inhibitors of the NS2B-NS3 protease. To that aim, we performed structure-based virtual screening using 467,000 structurally diverse chemical compounds. Then, a fluorescence-based protease inhibition assay was used to test whether the selected candidates inhibited ZIKV protease activity. Among the 123 candidate inhibitors selected from virtual screening, compound 1 significantly inhibited ZIKV NS2B-NS3 protease activity in vitro. In addition, compound 1 effectively inhibited ZIKV and DENV infection of human cells. Molecular docking analysis suggested that compound 1 binds to the NS2B-NS3 protease of ZIKV and DENV. Thus, compound 1 could be used as a new therapeutic option for the development of more potent antiviral drugs against both ZIKV and DENV, reducing the risks of ADE.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33227952

RESUMO

Plasticizers are added to diverse consumer products including children's products. Owing to their potential for endocrine disruption, the use of phthalate plasticizers is restricted in many children's products. In this study, exposure to five phthalate esters (dibutylphthalate, di(2-ethylhexyl) phthalate (DEHP), diethyl phthalate, di-isobutyl phthalate, and diisononyl phthalate (DINP)) and an alternative (di-ethylhexyl adipate) was assessed by the use of children's products based on chemical analysis of 3345 products purchased during 2017 and 2019 in Korea. Plasticizers were found above the detection limits in 387 products, and DEHP and DINP were the two most predominantly detected plasticizers. Deterministic and probabilistic estimation of the margin of exposure at a screening level revealed that the use of children's products might be an important risk factor. However, it is also highly likely that the exposure could be overestimated, because the migration rate was estimated based solely on the content of plasticizers in children's products. Chemical migration is a key process determining the absorption of plasticizers from products; thus, further refinements in experimental determination or model estimation of the migration rate are required.


Assuntos
Exposição Ambiental , Ácidos Ftálicos , Qualidade de Produtos para o Consumidor , Ésteres/análise , Ésteres/química , Humanos , Ácidos Ftálicos/análise , Ácidos Ftálicos/química , Plastificantes/análise , Plastificantes/química , República da Coreia
6.
J Microbiol Biotechnol ; 30(12): 1843-1853, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33203821

RESUMO

COVID-19, caused by the novel coronavirus SARS-CoV-2, has spread globally and caused serious social and economic problems. The WHO has declared this outbreak a pandemic. Currently, there are no approved vaccines or antiviral drugs that prevent SARS-CoV-2 infection. Drugs already approved for clinical use would be ideal candidates for rapid development as COVID-19 treatments. In this work, we screened 1,473 FDA-approved drugs to identify inhibitors of SARS-CoV-2 infection using cell-based assays. The antiviral activity of each compound was measured based on the immunofluorescent staining of infected cells using anti-dsRNA antibody. Twenty-nine drugs among those tested showed antiviral activity against SARS-CoV-2. We report this new list of inhibitors to quickly provide basic information for consideration in developing potential therapies.


Assuntos
Antivirais/farmacologia , Aprovação de Drogas , Reposicionamento de Medicamentos , SARS-CoV-2/efeitos dos fármacos , Antivirais/toxicidade , Humanos , Estados Unidos , United States Food and Drug Administration
7.
J Microbiol Biotechnol ; 30(3): 313-324, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32238757

RESUMO

Coronavirus disease 2019 (COVID-19), which causes serious respiratory illness such as pneumonia and lung failure, was first reported in Wuhan, the capital of Hubei, China. The etiological agent of COVID-19 has been confirmed as a novel coronavirus, now known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is most likely originated from zoonotic coronaviruses, like SARS-CoV, which emerged in 2002. Within a few months of the first report, SARS-CoV-2 had spread across China and worldwide, reaching a pandemic level. As COVID-19 has triggered enormous human casualties and serious economic loss posing global threat, an understanding of the ongoing situation and the development of strategies to contain the virus's spread are urgently needed. Currently, various diagnostic kits to test for COVID-19 are available and several repurposing therapeutics for COVID-19 have shown to be clinically effective. In addition, global institutions and companies have begun to develop vaccines for the prevention of COVID-19. Here, we review the current status of epidemiology, diagnosis, treatment, and vaccine development for COVID-19.


Assuntos
Betacoronavirus , Técnicas de Laboratório Clínico , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Vacinas Virais , Betacoronavirus/imunologia , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Humanos , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Pneumonia Viral/terapia , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
8.
Enzyme Microb Technol ; 135: 109496, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32146939

RESUMO

Catechins in green tea possess various health benefits. Enzymatic treatment improves physiological activities by inducing bioconversion of catechins. Here, we investigated the effect of green tea infusion (GT) after tannase treatment, which transforms (-)-epigallocatechin gallate (EGCG) to gallic acid (GA) and (-)-epigallocatechin (EGC), on adipocyte differentiation and mature adipocyte metabolism. The optimal conditions for tannase-mediated improvement in GA and EGC yields in GT were investigated using response surface methodology. Yields of GA and EGC were 43-fold (0.43 mg/mL) and 1.66-fold higher (1.11 mg/mL), respectively, compared to GT without tannase treatment. The optimal reaction conditions for tannase-mediated biotransformation were observed on 0.54 mg mL-1 of tannase, reaction time (86.79 min), and reaction temperature at 22.59 °C. GT and tannase-treated GT (TANs) upregulated adiponectin, uncoupling protein 1, adipose triglyceride lipase, and hormone-sensitive lipase gene expression in differentiated 3T3-L1 adipocytes, with TAN inducing better effects than GT, which implies that tannase treatment improved the beneficial effect of GT on adipocyte metabolism. Thus, tannase-mediated bio-transformation is an attractive candidate for preparing GT with enhanced anti-obesity properties.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Hidrolases de Éster Carboxílico/química , Catequina/análogos & derivados , Proteínas Fúngicas/química , Extratos Vegetais/química , Adipócitos/citologia , Adiponectina/genética , Adiponectina/metabolismo , Animais , Aspergillus/enzimologia , Biocatálise , Camellia sinensis/química , Catequina/química , Catequina/farmacologia , Diferenciação Celular , Manipulação de Alimentos , Ácido Gálico/química , Ácido Gálico/farmacologia , Camundongos , Células NIH 3T3 , Extratos Vegetais/farmacologia , Folhas de Planta/química , Chá/química , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
9.
J Food Sci ; 84(11): 3186-3193, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31589348

RESUMO

Rebaudioside A was modified via glucosylation by recombinant dextransucrase of Leuconostoc lactis EG001 in Escherichia coli BL21 (DE3), forming single O-α-D-glucosyl-(1″→6') rebaudioside A with yield of 86%. O-α-D-glucosyl-(1″→6') rebaudioside A was purified using HPLC and Diaion HP-20 and its properties were characterized for possible use as a food ingredient. Almost 98% of O-α-D-glucosyl-(1″→6') rebaudioside A was dissolved after 15 days of storage at room temperature, compared to only 11% for rebaudioside A. Compared to rebaudioside A, O-α-D-glucosyl-(1″→6') rebaudioside A showed similar or improved acidic or thermal stability in commercial drinks. Thus, O-α-D-glucosyl-(1″→6') rebaudioside A could be used as a highly pure and improved sweetener with high stability in commercial drinks. PRACTICAL APPLICATION: The proposed method can be used to generate glucosyl rebaudioside A by enzymatic glucosylation. Simple glucosyl rebaudioside A exhibited high acid/thermal stability and improved sweetener in commercialized drinks. This method can be applied to obtain high value-added bioactive compounds by enzymatic modification.


Assuntos
Proteínas de Bactérias/química , Diterpenos do Tipo Caurano/química , Glucosiltransferases/química , Leuconostoc/enzimologia , Edulcorantes/química , Biocatálise , Cromatografia Líquida de Alta Pressão
10.
Chem Biodivers ; 16(10): e1900347, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31532890

RESUMO

Catechins in green tea are well-known to be effective in reducing the risk of obesity. The purpose of this study was to elucidate the effects of catechins present in green tea on adipocyte differentiation and mature adipocyte metabolism. Treatment of 3T3-L1 mouse adipocyte during differentiation adipocytes with (-)-epigallocatechin (EGC) and gallic acid (GA) resulted in dose-dependent inhibition of adipogenesis. Specifically, EGC increased adiponectin and uncoupling protein 1 (UCP1) transcription in mature adipocytes. Transcription levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) were not significantly impacted by either of the compounds. These results suggest that the EGC is the most effective catechin having anti-obesity activity. Finally, EGC is an attractive candidate component for remodeling obesity.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Catequina/análogos & derivados , Células 3T3-L1 , Tecido Adiposo Marrom/metabolismo , Animais , Fármacos Antiobesidade/química , Fármacos Antiobesidade/isolamento & purificação , Catequina/química , Catequina/isolamento & purificação , Catequina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Chá/química
11.
Psychiatry Investig ; 15(5): 445-451, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30504749

RESUMO

OBJECTIVE: Despite the increasing number of North Korean defectors, research on their mental health conditions and suicidal thoughts and behaviors has not been conducted systematically. We examined the prevalence and risk factors of suicidal thoughts and behaviors in North Korean defectors. METHODS: This study focused on 300 North Korean defectors recruited from regional resettlement centers in South Korea. In-person interviews based on the North Korean version of the Composite International Diagnostic Interview were conducted to diagnose mental disorders and assess suicidal thoughts and behaviors. Logistic regression analyses were performed to evaluate the association between suicidal thoughts and behaviors and socio-demographic variables, and DSM-IV mental disorders. RESULTS: Lifetime prevalence of suicidal ideation, plans, and attempts were 28.3, 13.3, and 17.3%, respectively. Female sex (OR: 2.0, 95% CI: 1.0-3.9), presence of health problems in the past year (2.6, 95% CI: 1.4-4.6), and absence of both South Korean acquaintances (1.9, 95% CI: 1.0-3.4) and North Korean family (1.7, 95% CI: 1.0-2.9) were associated with higher odds of suicidal thoughts and behaviors, after adjusting for participant age, sex, and education. Presence of a mental disorder was associated with a significantly increased odd of suicide ideation, plan, and attempt. Of all mental disorder categories, agoraphobia had the strongest association with suicidal ideation (6.5, 95% CI: 2.0-21.6), plans (7.7, 95% CI: 2.5-23.2) and attempts (12.0, 95% CI: 3.5-40.8). CONCLUSION: Suicidal thoughts and behaviors among North Korean defectors are higher than the general population in South Korea, especially show high rates in transit countries. Further study should focus on the changes in suicidal thoughts and behaviors according to the settlement process and early prevention.

12.
J Microbiol Biotechnol ; 28(12): 2029-2035, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30394040

RESUMO

Cycloisomaltooligosaccharide glucanotransferase (CITase) was isolated from alkaliphilic Paenibacillus daejeonensis via an amino acid homology search for the reported CITase. The recombinant alkaliphilic CITase (PDCITase) from P. daejeonensis was expressed in an Escherichia coli expression system and purified as a single protein band of 111 kDa. PDCITase showed optimum activity at pH 8.0 and retained 100% of activity within a broad pH range (7.0-11.5) after 18 h, indicating alkaliphilic or alkalistable CITase properties. In addition, PDCITase produced CI-7 to CI-17, CI-18, and CI-19, which are relatively large cycloisomaltooligosaccharides yet to be reported. Therefore, these large cycloisomaltooligosaccharides can be applied to the improvement of water solubility of pharmaceutical biomaterials.


Assuntos
Glucosiltransferases/química , Glucosiltransferases/genética , Glucosiltransferases/isolamento & purificação , Paenibacillus/enzimologia , Paenibacillus/genética , Sequência de Aminoácidos , Clonagem Molecular , Ensaios Enzimáticos , Estabilidade Enzimática , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Cinética , Metais , Proteínas Recombinantes/genética , Solubilidade , Especificidade por Substrato , Temperatura
13.
Bioorg Med Chem Lett ; 27(15): 3582-3585, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28587824

RESUMO

Members of a series of 4-aryl-6,7,8,9-tetrahydrobenzo[4,5]thieno[3,2-e][1,2,4]triazolo[4,3-a]pyrimidin-5(4H)-ones (1, Fig. 2) were prepared and tested against representative enteroviruses including Human Coxsackievirus B1 (Cox B1), Human Coxsackievirus B3 (Cox B3), human Poliovirus 3 (PV3), human Rhinovirus 14 (HRV14), human Rhinovirus 21 (HRV 21) and human Rhinovirus 71 (HRV 71). The C-8-tert-butyl group on the tetrahydrobenzene ring in these substances was found to be crucial for their enterovirus activity. One member of this group, 1e, showed single digit micromolar activities (1.6-8.85µM) against a spectrum of viruses screened, and the highest selectivity index (SI) values for Cox B1 (>11.2), for Cox B3 (>11.5), and for PV3 (>51.2), respectively. In contrast, 1p, was the most active analog against the selected HRVs (1.8-2.6µM), and showed the highest selectivity indices among the group of compounds tested. The SI values for 1p were 11.5 for HRV14, 8.4 for HRV21, and 12.1 for HRV71, respectively.


Assuntos
Antivirais/química , Antivirais/farmacologia , Enterovirus/efeitos dos fármacos , Pirimidinonas/química , Pirimidinonas/farmacologia , Triazóis/química , Triazóis/farmacologia , Animais , Antivirais/metabolismo , Enterovirus/fisiologia , Infecções por Enterovirus/tratamento farmacológico , Infecções por Enterovirus/virologia , Células HeLa , Humanos , Microssomos/metabolismo , Pirimidinonas/metabolismo , Ratos , Triazóis/metabolismo , Replicação Viral/efeitos dos fármacos
14.
Virol J ; 13: 99, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27296985

RESUMO

BACKGROUND: Enterovirus 71 (EV71) is a major causative agent of hand-foot-mouth disease (HFMD) and also causes severe neurological complications, leading to fatality in young children. However, no effective therapy is currently available for the treatment of this infection. METHODS: We identified small-molecule inhibitors of EV71 from a screen of 968 Food and Drug Administration (FDA)-approved drugs, with which clinical application for EV71-associated diseases would be more feasible, using EV71 subgenomic replicon system. Primary hits were extensively evaluated for their antiviral activities in EV71-infected cells. RESULTS: We identified micafungin, an echinocandin antifungal drug, as a novel inhibitor of EV71. Micafungin potently inhibits the proliferation of EV71 as well as the replication of EV71 replicon in cells with a low micromolar IC50 (~5 µM). The strong antiviral effect of micafungin on EV71 replicon and the result from time-of-addition experiment demonstrated a targeting of micafungin on virion-independent intracellular process(es) during EV71 infection. Moreover, an extensive analysis excluded the involvement of 2C and 3A proteins, IRES-dependent translation, and also that of polyprotein processing in the antiviral effect of micafungin. CONCLUSIONS: Our research revealed a new indication of micafungin as an effective inhibitor of EV71, which is the first case reporting antiviral activity of micafungin, an antifungal drug.


Assuntos
Antivirais/farmacologia , Equinocandinas/farmacologia , Enterovirus Humano A/efeitos dos fármacos , Lipopeptídeos/farmacologia , Animais , Linhagem Celular , Reposicionamento de Medicamentos , Humanos , Micafungina
15.
Antiviral Res ; 124: 1-10, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26526589

RESUMO

Enteroviruses are major causative agents of various human diseases, and some of them are currently considered to be an enormous threat to public health. However, no effective therapy is currently available for the treatment of these infections. We identified gemcitabine, a nucleoside-analog drug used for cancer treatment, from a screen of bioactive chemicals as a novel inhibitor of coxsackievirus B3 (CVB3) and enterovirus 71 (EV71). Gemcitabine potently inhibited the proliferation of CVB3 and EV71, as well as the replication of CVB3 and EV71 replicons, in cells with a low micromolar IC50 (1-5 µM). Its strong inhibitory effect was also observed in cells infected with human rhinoviruses, demonstrating broad-spectrum antiviral effects on enteroviruses. Mechanistically, an extensive analysis excluded the involvement of 2C, 3A, IRES-dependent translation, and also that of polyprotein processing in the antiviral effects of gemcitabine. Importantly, gemcitabine in combination with ribavirin, an antiviral drug currently being used against a few RNA viruses, exhibited a synergistic antiviral effect on the replication of CVB3 and EV71 replicons. Consequently, our results clearly demonstrate a new indication for gemcitabine as an effective broad-spectrum inhibitor of enteroviruses and strongly suggest a new therapeutic strategy using gemcitabine alone or in combination with ribavirin for the treatment of various diseases associated with enterovirus infection.


Assuntos
Antivirais/farmacologia , Desoxicitidina/análogos & derivados , Enterovirus/efeitos dos fármacos , Ribavirina/farmacologia , Animais , Proliferação de Células , Desoxicitidina/farmacologia , Sinergismo Farmacológico , Enterovirus/fisiologia , Enterovirus Humano A/efeitos dos fármacos , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/tratamento farmacológico , Infecções por Enterovirus/virologia , Células HEK293 , Células HeLa , Humanos , Replicon/efeitos dos fármacos , Células Vero , Replicação Viral/efeitos dos fármacos , Gencitabina
16.
Oncotarget ; 5(15): 6102-12, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25026284

RESUMO

Mislocalization of proteins is a common feature of cancer cells. Since localization of proteins is tightly linked to its function, cancer cells can inactivate function of a tumor suppressor protein through mislocalization. The nuclear exportin CRM1/XPO 1 is upregulated in many cancers. Targeting XPO 1 can lead to nuclear retention of cargo proteins such as p53, Foxo, and BRCA1 leading to cell cycle arrest and apoptosis. We demonstrate that selective inhibitors of nuclear export (SINE) can functionally inactivate XPO 1 in prostate cancer cells. Unlike the potent, but toxic, XPO 1 inhibitor leptomycin B, SINE inhibitors (KPT-185, KPT-330, and KPT-251) cause a decrease in XPO 1 protein level through the proteasomal pathway. Treatment of prostate cancer cells with SINE inhibitors lead to XPO 1 inhibition, as evaluated by RevGFP export assay, leading to nuclear retention of p53 and Foxo proteins, consequently, triggering apoptosis. Our data reveal that treatment with SINE inhibitors at nanomolar concentrations results in decrease in proliferation and colonogenic capacity of prostate cancer cells by triggering apoptosis without causing any cell cycle arrest. We further demonstrate that SINE inhibitors can be combined with other chemotherapeutics like doxorubicin to achieve enhanced growth inhibition of prostate cancer cells. Since SINE inhibitors offer increased bioavailability, reduced toxicity to normal cells, and are orally available they can serve as effective therapeutics against prostate cancer. In conclusion, our data reveals that nucleocytoplasmic transport in prostate cancer can be effectively targeted by SINE inhibitors.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Transfecção
17.
Antiviral Res ; 93(2): 253-259, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22197247

RESUMO

The sulfated polysaccharide, p-KG03, purified from the marine microalga, Gyrodinium impudium, is a unique compound comprising homogenous galactose units conjugated to uronic acid and sulfated groups. Although previous studies showed that p-KG03 suppresses tumor cell growth and infection by encephalomyocarditis virus, its effect against enveloped virus infection and the biological mechanism of action have not been elucidated. In this report, the inhibitory activity of p-KG03 against influenza virus was examined and compared with that of other sulfated polysaccharides (fucoidan and pentosan polysulfate) and antiviral agents (oseltamivir phosphate, oseltamivir carboxylate, amantadine, and ribavirin). The results of a cytopathic effect reduction assay using MDCK cells demonstrated that p-KG03 exhibited the 50% effective concentration (EC(50)) values of 0.19-0.48 µg/ml against influenza type A virus infection (selectivity index >200) but not all influenza type B viruses. Mechanism studies showed that inhibition of influenza virus replication was maximized when p-KG03 was added during or within 6 h after viral infection, suggesting that mainly the viral adsorption and internalization steps are targeted by this compound. The results of influenza virus binding assay to p-KG03 and fluorescence microscopy indicate that the antiviral activity of p-KG03 is directly associated with its interaction with viral particles. The sulfated polysaccharide p-KG03 is a potent and specific influenza A viral entry inhibitor and may be a candidate for antiviral drug development.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/virologia , Microalgas/química , Rodófitas/química , Animais , Antivirais/química , Linhagem Celular , Humanos , Vírus da Influenza A/fisiologia , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/fisiologia , Influenza Humana/tratamento farmacológico , Polissacarídeos/química , Polissacarídeos/farmacologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
18.
Bioorg Med Chem Lett ; 20(5): 1585-8, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20137928

RESUMO

A series of N1-heterocyclic pyrimidinediones were extensively evaluated as HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs). Inhibitor 1 is active against NNRTI-resistant viruses including RT mutant K103N. The co-crystal structure of inhibitor 1 with HIV-1 RT revealed that H-bonds are formed with K101 and K103. Efforts to improve the suboptimal pharmacokinetic profile of 1 resulted in the discovery of compound 13, which represents the lead compound in this series with improved pharmacokinetics and similar potency as inhibitor 1.


Assuntos
Fármacos Anti-HIV/química , Transcriptase Reversa do HIV/antagonistas & inibidores , Compostos Heterocíclicos/química , Pirimidinonas/química , Inibidores da Transcriptase Reversa/química , Timina/análogos & derivados , Animais , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacocinética , Sítios de Ligação , Cristalografia por Raios X , Cães , Transcriptase Reversa do HIV/metabolismo , Humanos , Ligação de Hidrogênio , Microssomos/metabolismo , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/metabolismo , Pirimidinonas/síntese química , Pirimidinonas/farmacocinética , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/farmacocinética , Relação Estrutura-Atividade , Timina/síntese química , Timina/química , Timina/farmacocinética
19.
Antiviral Res ; 70(3): 93-104, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16546268

RESUMO

The influence of the thymidine (Thd) kinase (TK) of herpes simplex virus type 1 (HSV-1) on the intracellular uptake and anabolism of nucleosides has been investigated. To compare the differences between the TK-positive (TK(+)) and TK-deficient strains, acyclovir (ACV)-resistant strains were cloned from a cell culture and classified into 2 groups, viz. the TK-partial (TK(p)) and TK-negative (TK(-)). The cellular uptake of thymidine was highly dependent on the viral TK (vTK) activity. The TK(+) strain showed the highest level of intracellular thymidine uptake, the TK(p) strain a moderate level, which varied from strain to strain, and the TK(-) and mock strains showed little uptake. The inhibition of viral replication by ACV, ganciclovir (GCV) and penciclovir (PCV) did not decrease the Thd uptake at all. On the contrary, a notable increase found to be induced by ACV. The influence of the vTK on the uptake of GCV or PCV was much greater than that of ACV. The metabolism was generally less dependent on the vTK activity than the influx. The influx and phosphorylation rates of GCV and PCV were dependent on the substrate specificity of the vTK.


Assuntos
Antivirais/metabolismo , DNA Viral/metabolismo , DNA/metabolismo , Herpesvirus Humano 1/enzimologia , Timidina Quinase/metabolismo , Timidina/metabolismo , Aciclovir/análogos & derivados , Aciclovir/metabolismo , Aciclovir/farmacologia , Animais , Antivirais/farmacologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Farmacorresistência Viral , Ganciclovir/metabolismo , Ganciclovir/farmacologia , Guanina , Herpesvirus Humano 1/patogenicidade , Humanos , Mutação , Especificidade por Substrato , Timidina Quinase/genética , Células Vero
20.
Arch Pharm Res ; 26(1): 9-14, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12568350

RESUMO

For probing the importance of planarity of imidazolidinone motif of 4-phenyl-1-(benzenesulfonyl)imidazolidinones 1 for their cytotoxicity, 4-phenyl-2-(benzoyl)[1,2,5]thiadiazolidine-1,1-dioxide (2a), 4-phenyl-2-(p-toluoyl)[1,2,5]thiadiazolidine-1,1-dioxide (2b), 4-phenyl-2-(phenylcarbamoyl)[1,2,5]thiadiazolidine-1,1-dioxide (3a), and 4-phenyl-2-(p-tolylcarbamoyl)[1,2,5]thiadiazolidine-1,1-dioxide (3b) were prepared along with their regioisomers (5a, 5b, 9a, 9b) and their cytotoxicity were measured against human lung carcinoma (A549), human colon carcinoma (COL0205), human ovarian cancer (SK-OV-3), human leukemic cancer (K562), and murine colon adenocarcinoma (Colon26) cell lines in vitro. All compounds prepared do not show any activity against all five cancer cell lines unlike 1. Compounds 1 possess planarity of imidazolidinone, especially in sulfonylurea moiety (-SO2NHCONH-). However compounds 2 and 3 have nonplanar 5-membered ring, [1,2,5]thiadiazolidine-1,1-dioxides. Such structural differentiation might result in the loss of activity. Therefore the inactivity of 2 and 3 could also be an indication for the necessity of planarity of imidazolidinone ring of 1 for their cytotoxic activity.


Assuntos
Imidazóis/química , Imidazóis/toxicidade , Animais , Humanos , Imidazóis/síntese química , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...