Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(48): 30946-30955, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33324802

RESUMO

Hyperpigmentation resulting from the overactivation of tyrosinase leads to darker spots or patches on the human skin. Although these phenomena are harmless, there is still great demand for melanogenesis inhibitors to prevent hyperpigmentation by inhibiting the tyrosinase, a rate-limiting enzyme in melanogenesis. Although Lepisorus thunbergianus has been used in folk remedies as a diuretic and hemostatic agent, its effect on melanogenesis has not yet been reported. In this study, we prepared an L. thunbergianus extract and its solvent fractions and evaluated their biological activity against free radical and melanin synthesis. The extract of L. thunbergianus inhibited mushroom tyrosinase activity more efficiently than, and with similar antioxidant activity to, arbutin in vitro. Comparative evaluation of the anti-melanogenesis and anti-tyrosinase activity of L. thunbergianus solvent fractions demonstrated that, by inhibiting tyrosinase activity, the butanol fraction has the highest potential for the inhibition of melanogenesis in melanoma cells. We found by structural analysis using high-performance liquid chromatography (HPLC) and NMR spectroscopy that the major compounds in butanol fraction were three caffeoylquinic acid derivatives. The three derivatives had similar radical scavenging and anti-tyrosinase activities in vitro, while only 5-caffeoylquinic acid had an inhibitory effect on α-MSH-induced melanogenesis. The inhibitory effect of 5-caffeoylquinic acid was verified by the determination of the melanin content and tyrosinase activity in melanoma after treating the cells with a commercial compound. Further, we revealed that 5-caffeoylquinic acid inhibited melanogenesis by chelating a copper cation from a copper-tyrosinase complex. Thus, 5-caffeoylquinic acid or butanol fraction isolated from L. thunbergianus might be useful in cosmetics as a skin-whitening agent.

2.
Molecules ; 24(14)2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336931

RESUMO

The abnormal regulation of melanin synthesis leads to a wide range of pigmentary disorders. Although various melanin biosynthesis inhibitors have been developed, their efficacy and long-term safety needs to be further improved, and thus the goal of this study is to develop promising natural compound inhibitors of melanin biosynthesis. Here, we obtained aglycone flavonoid extract through the microwave-assisted hydrolysis of glycoside extract from Korean mistletoe in acidic condition. The aglycone extract inhibited tyrosinase activity more efficiently with better antioxidant activity than glycoside extract in vitro. The microwave-assisted aglycone extract of mistletoe was further analyzed for in vivo activity, and the results showed the aglycone extract inhibited both early melanocyte development and melanin synthesis more efficiently in zebrafish embryo in a dose-dependent manner. Our in vivo toxicity assay quantitatively measured cell death in zebrafish embryos and showed that the microwave-assisted aglycone extract of mistletoe had no significant effect on cell death (p < 0.001), indicating that aglycone extract is more biocompatible than glycoside extract. Furthermore, our in vitro and in vivo analyses successfully identified and characterized velutin, an aglycone of a homoflavoyadorinin B glycoside, as a major inhibitory component in the microwave-assisted mistletoe extract. Ultimately, this study showed that the novel natural compound inhibitor velutin, which was generated through microwave-assisted extraction from mistletoe, improved the efficacy of melanin biosynthesis inhibition with little toxicity.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Flavonas/farmacologia , Melaninas/biossíntese , Erva-de-Passarinho/química , Extratos Vegetais/farmacologia , Animais , Linhagem Celular Tumoral , Fracionamento Químico , Cromatografia Líquida de Alta Pressão , Flavonas/química , Flavonas/isolamento & purificação , Flavonoides/química , Flavonoides/farmacologia , Glicosídeos/química , Hidrólise , Melanócitos/metabolismo , Micro-Ondas , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Peixe-Zebra
3.
Eur J Pharm Sci ; 28(1-2): 26-33, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16455235

RESUMO

We previously reported that 5-aminosalicyltaurine (taurine-conjugated 5-ASA, 5-ASA-Tau) showed a potential as a colon-specific prodrug of 5-aminosalicylic acid (5-ASA) by in vitro evaluation. In this report, we in vivo-evaluated 5-ASA-Tau as a colon-specific prodrug for treatment of experimental colitis. Taurine conjugation of 5-ASA greatly reduced absorption of 5-ASA from the intestine. Oral administration of taurine-conjugated 5-ASA not only increased the colonic delivery efficiency of 5-ASA but also decreased the systemic absorption of free 5-ASA as compared with that of 5-ASA and, moreover, taurine is similarly effective to known colon-specific carriers for 5-ASA, glycine and aspartic acid, suggesting that taurine conjugation is an efficient way to increase the therapeutic effect and to reduce the adverse effects of 5-ASA. Intracolonic treatment with combined 5-ASA/taurine additively ameliorated TNBS-induced colitis rats indicating that taurine acted as not only a promoiety but also a therapeutically active agent. Furthermore, 5-ASA-Tau is slightly more effective than sulfasalazine in alleviating the colonic inflammation induced by TNBS. Taken together, our data suggest that 5-ASA-Tau is a potential colon-specific prodrug of 5-aminosalicylic acid with improved therapeutic activity against inflammatory bowel disease.


Assuntos
Ácidos Aminossalicílicos/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Colite/tratamento farmacológico , Mesalamina/uso terapêutico , Pró-Fármacos/uso terapêutico , Taurina/análogos & derivados , Ácidos Aminossalicílicos/química , Ácidos Aminossalicílicos/farmacocinética , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Cromatografia Líquida de Alta Pressão , Colite/induzido quimicamente , Colo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Fezes/química , Fármacos Gastrointestinais/uso terapêutico , Absorção Intestinal , Masculino , Mesalamina/química , Mesalamina/farmacocinética , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Ratos , Ratos Sprague-Dawley , Sulfassalazina/uso terapêutico , Taurina/química , Taurina/farmacocinética , Taurina/uso terapêutico , Ácido Trinitrobenzenossulfônico
4.
Arch Pharm Res ; 26(4): 264-9, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12735682

RESUMO

5-Aminosalicylic acid (5-ASA) is an active ingredient of therapeutic agents used for Crohn's disease and ulcerative colitis. Because it is absorbed rapidly and extensively in the upper intestine, delivery of the agent specifically to the colon is necessary. We selected taurine as a colon-specific promoiety and designed 5-aminosalicyltaurine (5-ASA-Tau) as a new colon-specific prodrug of 5-aminosalicylic acid (5-ASA). It was expected that introduction of taurine would restrict the absorption of the prodrug and show additive effect to the anti-inflammatory action of 5-ASA after hydrolysis. 5-ASA-Tau was prepared in good yield by a simple synthetic route. The apparent partition coefficient of 5-ASA-Tau in 1-octanol/pH 6.8 phosphate buffer or CHCl3/pH 6.8 phosphate buffer was 0.10 or 0.18, respectively, at 37 degrees C. To determine the chemical and biochemical stability in the upper intestinal environment, 5-ASA-Tau was incubated in pH 1.2 and 6.8 buffer solutions, and with the homogenates of tissue and contents of stomach or small intestine of rats at 37 degrees C. 5-ASA was not detected from any of the incubation medium with no change in the concentration of 5-ASA-Tau. On incubation of 5-ASA-Tau with the cecal and colonic contents of rats, the fraction of the dose released as 5-ASA was 45% and 20%, respectively, in 8 h. Considering low partition coefficient and stability in the upper intestine, 5-ASA-Tau might be nonabsorbable and stable in the upper intestine. After oral administration, it would be delivered to the colon in intact form and release 5-ASA and taurine. These results suggested 5-ASA-Tau as a promising colon-specific prodrug of 5-ASA.


Assuntos
Ácidos Aminossalicílicos/síntese química , Ácidos Aminossalicílicos/farmacocinética , Colo/efeitos dos fármacos , Absorção Intestinal/efeitos dos fármacos , Mesalamina/farmacocinética , Especificidade de Órgãos/efeitos dos fármacos , Pró-Fármacos/farmacocinética , Taurina/análogos & derivados , Taurina/síntese química , Taurina/farmacocinética , Administração Oral , Animais , Química Farmacêutica , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Técnicas In Vitro , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...