Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401928, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700385

RESUMO

The formation of a stable solid electrolyte interphase (SEI) layer is crucial for enhancing the safety and lifespan of Li metal batteries. Fundamentally, a homogeneous Li+ behavior by controlling the chemical reaction at the anode/electrolyte interface is the key to establishing a stable SEI layer. However, due to the highly reactive nature of Li metal anodes (LMAs), controlling the movement of Li+ at the anode/electrolyte interface remains challenging. Here, an advanced approach is proposed for coating a sacrificial layer called fluorinated self-assembled monolayer (FSL) on a boehmite-coated polyethylene (BPE) separator to form a stable SEI layer. By leveraging the strong affinity between the fluorine functional group and Li+, the rapid formation of a LiF-rich SEI layer in the cell production and early cycling stage is facilitated. This initial stable SEI formation promotes the subsequent homogeneous Li+ flux, thereby improving the LMA stability and yielding an enhanced battery lifespan. Further, the mechanism behind the stable SEI layer generation by controlling the Li+ dynamics through the FSL-treated BPE separator is comprehensively verified. Overall, this research offers significant contributions to the energy storage field by addressing challenges associated with LMAs, thus highlighting the importance of interfacial control in achieving a stable SEI layer.

2.
Small ; 19(22): e2207223, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36808806

RESUMO

Composite solid electrolytes (CSEs) are newly emerging components for all-solid-state Li-metal batteries owing to their excellent processability and compatibility with the electrodes. Moreover, the ionic conductivity of the CSEs is one order of magnitude higher than the solid polymer electrolytes (SPEs) by incorporation of inorganic fillers into SPEs. However, their advancement has come to a standstill owing to unclear Li-ion conduction mechanism and pathway. Herein, the dominating effect of the oxygen vacancy (Ovac ) in the inorganic filler on the ionic conductivity of CSEs is demonstrated via Li-ion-conducting percolation network model. Based on density functional theory, indium tin oxide nanoparticles (ITO NPs) are selected as inorganic filler to determine the effect of Ovac on the ionic conductivity of the CSEs. Owing to the fast Li-ion conduction through the Ovac inducing percolation network on ITO NP-polymer interface, LiFePO4 /CSE/Li cells using CSEs exhibit a remarkable capacity in long-term cycling (154 mAh g-1 at 0.5C after 700 cycles). Moreover, by modifying the Ovac concentration of ITO NPs via UV-ozone oxygen-vacancy modification, the ionic conductivity dependence of the CSEs on the surface Ovac from the inorganic filler is directly verified.

3.
ACS Appl Mater Interfaces ; 13(7): 8552-8562, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33566562

RESUMO

Metal oxide semiconductors doped with additional inorganic cations have insufficient electron mobility for next-generation electronic devices so strategies to realize the semiconductors exhibiting stability and high performance are required. To overcome the limitations of conventional inorganic cation doping to improve the electrical characteristics and stability of metal oxide semiconductors, we propose solution-processed high-performance metal oxide thin-film transistors (TFTs) by incorporating polyaniline (PANI), a conductive polymer, in a metal oxide matrix. The chemical interaction between the metal oxide and PANI demonstrated that the defect sites and crystallinity of the semiconductor layer are controllable. In addition, the change in oxygen-related chemical bonding of PANI-doped indium oxide (InOx) TFTs induces superior electrical characteristics compared to pristine InOx TFTs, even though trace amounts of PANI are doped in the semiconductor. In particular, the average field-effect mobility remarkably enhanced from 15.02 to 26.58 cm2 V-1 s-1, the on/off current ratio improved from 108 to 109, and the threshold voltage became close to 0 V actually from -7.9 to -1.4 V.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...