Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(13): eaay6994, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32284967

RESUMO

The clinical use of human bone marrow-derived mesenchymal stem cells (BM-MSCs) has been hampered by their poor performance after transplantation into failing hearts. Here, to improve the therapeutic potential of BM-MSCs, we developed a strategy termed in vivo priming in which BM-MSCs are primed in vivo in myocardial infarction (MI)-induced hearts through genetically engineered hepatocyte growth factor-expressing MSCs (HGF-eMSCs) that are encapsulated within an epicardially implanted 3D cardiac patch. Primed BM-MSCs through HGF-eMSCs exhibited improved vasculogenic potential and cell viability, which ultimately enhanced vascular regeneration and restored cardiac function to the MI hearts. Histological analyses further demonstrated that the primed BM-MSCs survived longer within a cardiac patch and conferred cardioprotection evidenced by substantially higher numbers of viable cardiomyocytes in the MI hearts. These results provide compelling evidence that this in vivo priming strategy can be an effective means to enhance the cardiac repair of MI hearts.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Cardiopatias/terapia , Fator de Crescimento de Hepatócito/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Técnicas de Cultura de Células , Terapia Baseada em Transplante de Células e Tecidos/métodos , Modelos Animais de Doenças , Expressão Gênica , Engenharia Genética , Cardiopatias/etiologia , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Suínos
2.
Cell Transplant ; 29: 963689720902466, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32067480

RESUMO

There is still a lack of sufficient research on the mechanism behind neurogenic bladder (NB) treatment. The aim of this study was to explore the effect of overexpressed stromal cell-derived factor-1 (SDF-1) secreted by engineered immortalized mesenchymal stem cells (imMSCs) on the NB. In this study, primary bone marrow mesenchymal stem cells (BM-MSCs) were transfected into immortalized upregulated SDF-1-engineered BM-MSCs (imMSCs/eSDF-1+) or immortalized normal SDF-1-engineered BM-MSCs (imMSCs/eSDF-1-). NB rats induced by bilateral pelvic nerve (PN) transection were treated with imMSCs/eSDF-1+, imMSCs/eSDF-1-, or sham. After a 4-week treatment, the bladder function was assessed by cystometry and voiding pattern analysis. The PN and bladder tissues were evaluated via immunostaining and western blotting analysis. We found that imMSCs/eSDF-1+ expressed higher levels of SDF-1 in vitro and in vivo. The treatment of imMSCs/eSDF-1+ improved NB and evidently stimulated the recovery of bladder wall in NB rats. The recovery of injured nerve was more effective in the NB+imMSCs/eSDF-1+ group than in other groups. High SDF-1 expression improved the levels of vascular endothelial growth factor and basic fibroblast growth factor. Apoptosis was decreased after imMSCs injection, and was detected rarely in the NB+imMSCs/eSDF-1+ group. Injection of imMSCs boosted the expression of neuronal nitric oxide synthase, p-AKT, and p-ERK in the NB+imMSCs/eSDF-1+ group than in other groups. Our findings demonstrated that overexpression of SDF-1 induced additional MSC homing to the injured tissue, which improved the NB by accelerating the restoration of injured nerve in a rat model.


Assuntos
Quimiocina CXCL12/metabolismo , Células-Tronco Mesenquimais/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/terapia , Bexiga Urinaria Neurogênica/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Quimiocina CXCL12/genética , Imunofluorescência , Masculino , Células-Tronco Mesenquimais/citologia , Ratos , Transdução de Sinais , Bexiga Urinaria Neurogênica/patologia
3.
Int J Mol Sci ; 19(12)2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30477146

RESUMO

Effective therapies for erectile dysfunction (ED) associated with diabetes mellitus (DM) are needed. In this study, the effects of stromal cell-derived factor-1 (SDF-1)-expressing engineered mesenchymal stem cells (SDF-1 eMSCs) and the relevant mechanisms in the corpus cavernosum of a streptozotocin (STZ)-induced DM ED rat model were evaluated. In a randomized controlled trial, Sprague⁻Dawley (SD) rats (n = 48) were divided into four groups (n = 12/group): Normal (control), DM ED (diabetes induced by STZ), DM ED + BM-MSC (treated with bone marrow [BM]-derived MSCs), and DM ED + SDF-1 eMSC (treated with SDF-1-expressing BM-MSCs). After four weeks, intracavernosal pressure (ICP), an indicator of erectile function, was 0.75 ± 0.07 in the normal group, 0.27 ± 0.08 in the DM ED group, 0.42 ± 0.11 in the DM ED + BM-MSC group, and 0.58 ± 0.11 in the DM ED + SDF-1 eMSC group. BM-MSCs, especially SDF-1 eMSCs, improved ED (p < 0.05). SDF-1 eMSC treatment improved the smooth muscle content in the corpus cavernosum (p < 0.05). As SDF-1 expression increased, ED recovery improved. In the SDF-1 eMSC group, levels of neuronal nitric oxide synthase (nNOS) and phosphorylated endothelial NOS (p-eNOS) were higher than those in other groups (p < 0.05). In addition, high stromal cell-derived factor-1 (SDF-1) expression was associated with increased vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in DM ED rats (p < 0.05). Higher levels of phosphorylated protein kinase B (p-AKT)/protein kinase B (AKT) (p < 0.05) and B-cell lymphoma-2 (Bcl-2) and lower levels of the apoptosis factors Bcl2-associated x (Bax) and caspase-3 were observed in the MSC-treated group than in the DM ED group (p < 0.05). SDF-1 eMSCs showed beneficial effects on recovery from erectile function.


Assuntos
Quimiocina CXCL12/genética , Disfunção Erétil/genética , Expressão Gênica , Engenharia Genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Animais , Glicemia , Peso Corporal , Movimento Celular/genética , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Disfunção Erétil/terapia , Masculino , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais
4.
FASEB J ; 29(1): 300-13, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25351982

RESUMO

Polycomb protein chromobox homolog 7 (CBX7) is involved in several biologic processes including stem cell regulation and cancer development, but its roles in breast cancer remain unknown. Here, we demonstrate that CBX7 negatively regulates breast tumor initiation. CD44(+)/CD24(-)/ESA(+) breast stem-like cells showed diminished CBX7 expression. Furthermore, small hairpin RNA-mediated CBX7 knockdown in breast epithelial and cancer cells increased the CD44(+)/CD24(-)/ESA(+) cell population and reinforced in vitro self-renewal and in vivo tumor-initiating ability. Similarly, CBX7 overexpression repressed these effects. We also found that CBX7 inhibits the Wnt/ß-catenin/T cell factor pathway by enhancing the expression of Dickkopf-1 (DKK-1), a Wnt antagonist. In particular, CBX7 increased DKK-1 transcription by cooperating with p300 acetyltransferase and subsequently enhancing the histone acetylation of the DKK-1 promoter. Furthermore, pharmacologic inhibition of DKK-1 in CBX7-overexpressing cells showed recovery of Wnt signaling and consequent rescue of the CD44(+)/CD24(-)/ESA(+) cell population. Taken together, these findings indicate that CBX7-mediated epigenetic induction of DKK-1 is crucial for the inhibition of breast tumorigenicity, suggesting that CBX7 could be a potential tumor suppressor in human breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Epigênese Genética , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Biológicos , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/genética , Fatores de Transcrição TCF/metabolismo , Ensaio Tumoral de Célula-Tronco , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...