Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 414(27): 7763-7771, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36071267

RESUMO

Airborne microbes can rapidly spread and cause various infectious diseases worldwide. This necessitates the determination of a fast and highly sensitive detection method. There have been no studies on receptors targeting Citrobacter braakii (C. braakii), a pathogenic bacterium which can exist in the air. In this study, we rapidly isolate an aptamer, a nucleic acid molecule that can specifically bind to C. braakii by centrifugation-based partitioning method (CBPM) reported previously by our groups as omitting the repeated rounds of binding incubation, separation, and amplification that are indispensable for SELEX. The binding affinity and specificity of isolated aptamers are checked using bacteria in liquid culture and recollection solution from aerosolized bacteria. Recollection solutions of the recovered bacteria are obtained by nebulizing, drying, and recapturing with a biosampler. The CB-5 aptamer shows high affinity and specificity for C. braakii (Kd: 16.42 in liquid culture and 26.91 nM in recollection from aerosolized sample). Our results indicate the current protocol can be employed for the rapid development of reliable diagnostic receptors targeting airborne bacteria.


Assuntos
Aptâmeros de Nucleotídeos , Ácidos Nucleicos , Aptâmeros de Nucleotídeos/química , Bactérias , Técnica de Seleção de Aptâmeros/métodos
2.
Chemosphere ; 288(Pt 2): 132584, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34656629

RESUMO

Mercury (Hg) emissions are increasing annually owing to rapid global industrialization. Hg poisoning can severely affect the human body owing to its persistence and bioaccumulation. In this study, hybrid nanoflowers (NFs) were synthesized by promoting the formation of primary copper-phosphate crystals coordinated with polydopamine (PDA) and Fe3O4 magnetic nanoparticles (MNPs), followed by coating with silver nanoparticles on the surface of the NFs (Ag-MNP-PDA-Cu NFs). The results suggest that the hierarchical structure of the NFs enabled a large surface area with nanosized pores, which were exploited for Hg adsorption. The adsorbed Hg ions could be further eliminated from the solution based on the magnetic characteristics of the NFs. Additionally, hybrid NFs functionalized with Hg2+-binding aptamers (Apt-Ag-MNP-PDA-Cu NFs) were prepared based on the silver-sulfur interactions between the Ag-MNP-PDA-Cu NFs and thiol-modified aptamers. The performance of both adsorbents demonstrated that the immobilization of Hg2+-binding aptamers significantly improved the elimination of Hg from solution. The Hg2+ adsorption isotherm of the Apt-Ag-MNP-PDA-Cu NFs followed the Dubinin-Radushkevich model, with a maximum adsorption capacity of 1073.19 mg/g. The Apt-Ag-MNP-PDA-Cu NFs adsorbed greater amounts of Hg2+ than the non-functionalized NFs at the same concentrations, which confirmed that the functionalization of Hg2+-binding aptamers on the NFs improved the Hg2+ removal performance. The results suggest that Apt-Ag-MNP-PDA-Cu NFs could serve as an efficient Hg-removing adsorbent, possibly by providing binding sites for the formation of T-Hg2+-T complexes.


Assuntos
Nanopartículas de Magnetita , Mercúrio , Cobre , Humanos , Indóis , Polímeros , Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...