Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298389

RESUMO

Non-small cell lung cancer (NSCLC) is a fatal malignant tumor with a high mortality rate. Cancer stem cells (CSCs) play pivotal roles in tumor initiation and progression, treatment resistance, and NSCLC recurrence. Therefore, the development of novel therapeutic targets and anticancer drugs that effectively block CSC growth may improve treatment outcomes in patients with NSCLC. In this study, we evaluated, for the first time, the effects of natural cyclophilin A (CypA) inhibitors, including 23-demethyl 8,13-deoxynargenicin (C9) and cyclosporin A (CsA), on the growth of NSCLC CSCs. C9 and CsA more sensitively inhibited the proliferation of epidermal growth factor receptor (EGFR)-mutant NSCLC CSCs than EGFR wild-type NSCLC CSCs. Both compounds suppressed the self-renewal ability of NSCLC CSCs and NSCLC-CSC-derived tumor growth in vivo. Furthermore, C9 and CsA inhibited NSCLC CSC growth by activating the intrinsic apoptotic pathway. Notably, C9 and CsA reduced the expression levels of major CSC markers, including integrin α6, CD133, CD44, ALDH1A1, Nanog, Oct4, and Sox2, through dual downregulation of the CypA/CD147 axis and EGFR activity in NSCLC CSCs. Our results also show that the EGFR tyrosine kinase inhibitor afatinib inactivated EGFR and decreased the expression levels of CypA and CD147 in NSCLC CSCs, suggesting close crosstalk between the CypA/CD147 and EGFR pathways in regulating NSCLC CSC growth. In addition, combined treatment with afatinib and C9 or CsA more potently inhibited the growth of EGFR-mutant NSCLC CSCs than single-compound treatments. These findings suggest that the natural CypA inhibitors C9 and CsA are potential anticancer agents that suppress the growth of EGFR-mutant NSCLC CSCs, either as monotherapy or in combination with afatinib, by interfering with the crosstalk between CypA/CD147 and EGFR.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclofilina A/genética , Ciclofilina A/metabolismo , Afatinib/farmacologia , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Antineoplásicos/farmacologia , Células-Tronco Neoplásicas/metabolismo
2.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924032

RESUMO

Leukemia is a type of blood cancer caused by the rapid proliferation of abnormal white blood cells. Currently, several treatment options, including chemotherapy, radiation therapy, and bone marrow transplantation, are used to treat leukemia, but the morbidity and mortality rates of patients with leukemia are still high. Therefore, there is still a need to develop more selective and less toxic drugs for the effective treatment of leukemia. Ampelopsin, also known as dihydromyricetin, is a plant-derived flavonoid that possesses multiple pharmacological functions, including antibacterial, anti-inflammatory, antioxidative, antiangiogenic, and anticancer activities. However, the anticancer effect and mechanism of action of ampelopsin in leukemia remain unclear. In this study, we evaluated the antileukemic effect of ampelopsin against acute promyelocytic HL60 and chronic myelogenous K562 leukemia cells. Ampelopsin significantly inhibited the proliferation of both leukemia cell lines at concentrations that did not affect normal cell viability. Ampelopsin induced cell cycle arrest at the sub-G1 phase in HL60 cells but the S phase in K562 cells. In addition, ampelopsin regulated the expression of cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors differently in each leukemia cell. Ampelopsin also induced apoptosis in both leukemia cell lines through nuclear condensation, loss of mitochondrial membrane potential, increase in reactive oxygen species (ROS) generation, activation of caspase-9, caspase-3, and poly ADP-ribose polymerase (PARP), and regulation of Bcl-2 family members. Furthermore, the antileukemic effect of ampelopsin was associated with the downregulation of AKT and NF-κB signaling pathways. Moreover, ampelopsin suppressed the expression levels of leukemia stemness markers, such as Oct4, Sox2, CD44, and CD133. Taken together, our findings suggest that ampelopsin may be an attractive chemotherapeutic agent against leukemia.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Flavonoides/farmacologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HL-60 , Humanos , Células K562 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
3.
J Chem Phys ; 154(5): 054308, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33557548

RESUMO

The conformational structures of heterocyclic compounds are of considerable interest to chemists and biochemists as they are often the constituents of natural products. Among saturated four-membered heterocycles, the conformational structure of oxetane is known to be slightly puckered in equilibrium because of a low interconversion barrier in its ring-puckering potential, unlike cyclobutane and thietane. We measured the one-photon vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) and two-photon IR+VUV-MATI spectra of oxetane for the first time to determine the ring-puckering potential of the oxetane cation and hence its conformational structure in the D0 (ground) state. Remarkably, negative anharmonicity and large amplitudes were observed for the ring-puckering vibrational mode progression in the low-frequency region of the observed MATI spectra. We were able to successfully analyze the progression in the MATI spectra through the Franck-Condon simulations, using modeled potential energy functions for the ring-puckering modes in the S0 and D0 states. Considering that the interconversion barrier and puckered angle for the ring-puckering potential on the S0 state were found to be 15.5 cm-1 and 14°, respectively, the cationic structure is expected to be planar with C2v symmetry. Our results revealed that the removal of an electron from the nonbonding orbitals on the oxygen atom in oxetane induced the straightening of the puckered ring in the cation owing to an increase in ring strain. Consequently, we conclude that this change in the conformational structure upon ionization generated the ring-puckering vibrational mode progression in the MATI spectra.

4.
Phys Chem Chem Phys ; 22(48): 28383-28392, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33300923

RESUMO

Methyl vinyl ketone (MVK), a volatile compound with photochemical activity, has received considerable attention in the fields of environmental chemistry and atmospheric chemistry. We explored the conformational stabilities of MVK in the neutral S0 and the cationic D0 states using conformer-specific vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy, which provided identifiable vibrational spectra for cationic MVK conformers. Based on the origin bands of the two individual conformers of MVK identified in the MATI spectra under different supersonic expansion conditions, the accurate adiabatic ionization energies of the s-trans and the s-cis conformers were determined to be 77 867 ± 4 (9.6543 ± 0.0005 eV) and 78 222 ± 4 cm-1 (9.6983 ± 0.0005 eV), respectively. The identifiable vibrational spectra of the two cationic conformers were further confirmed using vibrational assignments based on the Franck-Condon fit. Accordingly, precise cationic structures of the MVK conformers could be determined. The structural changes of the two conformers upon ionization could be attributed to the removal of an electron from the highest occupied molecular orbital of each conformer, which consists of nonbonding molecular orbitals on the oxygen atom in the carbonyl group interacting with the σ orbitals in the molecular plane. Consequently, the s-trans conformer was preferred by 48 ± 18 and 403 ± 18 cm-1 in the neutral ground S0 and the cationic D0 states, respectively, which was supported by density-corrected density functional theory calculations and natural bond orbital analysis.

5.
Phys Chem Chem Phys ; 22(11): 6184-6191, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32124892

RESUMO

The conformers of tetrahydrothiophene (THT) in the neutral (S0) and cationic (D0) ground states have attracted significant attention in terms of the conformational interconversion through pseudorotation. Herein, these conformers were explored by utilising one-photon mass-analysed threshold ionization (MATI) spectroscopy using the coherently tunable vacuum ultraviolet laser pulse generated by four-wave difference-frequency mixing in Kr medium, which allowed the acquisition of the vibrational spectrum of the corresponding cation. To identify the conformer corresponding to the measured MATI spectrum, the potential energy surfaces associated with pseudorotation in the S0 and D0 states were constructed at the B3LYP/cc-pVTZ level, where the twisted conformer with C2 symmetry in both states lies at the global minimum, while the Cs and C2v conformations were located at the saddle points. Although most of the peaks observed in the spectrum could be assigned as the ionic transitions between the twisted conformers (C2 symmetry) in the S0 and D0 states, distinct nontotally symmetric modes could not be assigned to any allowed vibration. Hence, Franck-Condon fitting was applied for the vibrational assignments in the observed spectrum. This revealed that the cationic conformer had a bent-like twist conformation of C1 symmetry instead of C2 symmetry. Furthermore, the geometrical changes induced by the removal of an electron from the non-bonding orbital of the sulfur atom gave prominent overtones and combination bands of the ring out-of-plane modes associated with pseudorotation as well as the stretching of 2C-1S-3C in the ring.

6.
J Chem Phys ; 151(1): 014304, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31272166

RESUMO

We report conformational and vibrational assignments of vacuum ultraviolet mass-analyzed threshold ionization spectrum of the isolated gauche conformer, based on previously determined conformer-specific photoionization and conformational stabilities of isobutanal. The vibrational spectrum of the pure cationic gauche conformer was acquired by removing the trans conformer via conformationally effective cooling with Ar carrier gas. The peaks in the spectrum were assigned by Franck-Condon (FC) fitting by adjusting the cationic geometrical parameters of the gauche conformer at the CAM-B3LYP/cc-pVTZ level. Based on the good agreement between the experimental and calculated results, we were able to determine the precise structure of the cationic gauche conformer of isobutanal with C1 symmetry. Notably, the unveiled vibrational structure was mainly attributed to a geometrical change along the vibrational motions associated with the formyl torsion and CC stretching upon ionization, resulting in their prominent spectral overtones and combination bands with other fundamental vibrations. On the potential energy curve for the formyl torsion of the cationic gauche conformer determined by FC fitting, the transition barrier at 313 cm-1 preserved the hindered formyl torsion in the case of a harmonic potential well, which was confirmed by the progression of formyl torsion, namely, 331, 332, and 333 observed at 60, 120, and 180 cm-1, respectively.

7.
Phys Chem Chem Phys ; 21(18): 9255-9264, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31012885

RESUMO

Alkylpyrazines, which are well-known as aromatic substances and traditional medicines, are interesting molecular systems, and their methyl conformations result in unique structural and dynamical properties. We explored the conformational preference of the methyl group and the highest occupied molecular orbitals (HOMOs) of 2-methylpyrazine and its cation by utilizing high-resolution one-photon vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy and natural bond orbital analysis to understand the relevant molecular activities. The measured VUV-MATI spectrum of 2-methylpyrazine revealed its adiabatic ionization energy and the vibrational frequencies of its cation. From the 0-0 band in the MATI spectrum under the zero-field limit, the accurate adiabatic ionization energy was determined as 9.0439 ± 0.0006 eV (72 944 ± 5 cm-1), which is lower than that of pyrazine. The peaks observed in the spectrum were unambiguously assigned based on vibrational frequencies and Franck-Condon factors from quantum chemical calculations for individual totally symmetric transitions between the S0 and D0 states using the simple one-photon dipole selection rules. The most convincing molecular structure of the 2-methylpyrazine cation was determined by Franck-Condon fit spectral simulations. Upon removal of an electron from the non-bonding orbital (HOMO) on the para nitrogen atoms, a significant structural change takes place along the vibrational motion associated with ring distortion by contraction of the N-N distance, resulting in prominent overtones and combination bands. In addition, the methyl substitution of pyrazine lowered the adiabatic ionization energy and the methyl group preferred the anti-configuration with respect to the pyrazine moiety in the D0 state, resulting in a frozen internal rotation regardless of ionization.

8.
J Chem Phys ; 149(17): 174302, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30409012

RESUMO

Isobutanal is an aliphatic aldehyde which has been extensively studied as an important intermediate in isomerization reactions as well as in astrochemically relevant models in the interstellar medium. Herein, we report on the conformer-specific photoionization and conformational stabilities of isobutanal utilizing one-photon mass-analyzed threshold ionization (MATI) spectroscopy with vacuum ultraviolet (VUV) pulses. The conformational population of isobutanal under different supersonic expansion conditions was explored to identify the conformers, from which their intrinsic photoionizations can be directly elucidated by measuring the VUV-MATI spectrum corresponding to each conformer. The observed MATI spectra could be analyzed through Franck-Condon simulations at the B3LYP/cc-pVTZ level for the isobutanal conformers, trans and gauche, for which the adiabatic ionization energies were precisely determined to be 78 133 ± 3 cm-1 (9.6873 ± 0.0004 eV) and 78 557 ± 3 cm-1 (9.7398 ± 0.0004 eV), respectively. Notably, only the gauche conformer undergoes a unique geometrical change upon ionization, resulting in the progression of the CHO torsional mode in the MATI spectra. Consequently, we determined the conformational stabilities of isobutanal by conformer-specific photoionization, given that the gauche is more stable than the trans by 162 ± 50 cm-1 in the neutral ground state, while the cationic gauche is less stable than the cationic trans by 262 ± 50 cm-1.

9.
Phys Chem Chem Phys ; 20(42): 27162-27168, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30335102

RESUMO

Crotonaldehyde is a simple α,ß-unsaturated aldehyde that reacts stereochemically with nucleophilic reagents according to its conformational structure. Identifiable vibrational spectra of the cationic crotonaldehyde conformers were measured using one-photon vacuum ultraviolet mass-analysed threshold ionization (VUV-MATI) spectroscopy. From the 0-0 bands for the individual conformers confirmed by Franck-Condon (FC) simulations, the precise adiabatic ionization energies were determined to be 9.7501 ± 0.0004 eV (78 640 ± 3 cm-1), 9.7620 ± 0.0004 eV (78 736 ± 3 cm-1), 9.7122 ± 0.0004 eV (78 334 ± 3 cm-1), and 9.6480 ± 0.0004 eV (77 816 ± 3 cm-1) for the trans-s-trans (tt)-, trans-s-cis (tc)-, cis-s-trans (ct)-, and cis-s-cis (cc)-crotonaldehyde, respectively. The complete vibrational assignments were accomplished for the peaks observed in the VUV-MATI spectrum from the calculated vibrational frequencies and the FC factors according to the dipole selection rules for one-photon absorption. In addition, the composition at ambient temperature was determined to be 1.000 (93.0%): 0.037 (3.4%): 0.036 (3.4%): 0.002 (0.2%) for the tt-/tc-/ct-/cc-conformers from the relative intensities of the 0-0 bands in the MATI spectrum normalized with the calculated dipole transition probabilities as proven by the NMR data for the trans- and cis-stereoisomers. This study ascertained the existence of the s-cis conformers of crotonaldehyde for the first time.

10.
Lab Chip ; 18(17): 2642-2652, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30069567

RESUMO

To achieve real-time monitoring of aerodynamic submicron particle size distributions at a point-of-interest, we developed a high-performance particle size spectrometer that is compact, low-cost, and portable. The present system consists of four key components: a unipolar mini-discharger for electrically charging particles, an inertial size-separator for classifying charged particles into five size fractions in terms of their aerodynamic sizes, a portable multi-channel electrometer for detecting femto-ampere currents carried by charged particles at each stage, and a retrieval algorithm for converting the current data into a smooth particle size distribution. The unipolar mini-discharger and inertial size separator were quantitatively characterised by using standard polystyrene latex (PSL) particles. The experimentally determined cut-off diameters at each stage in the inertial size separator were 1.17, 0.94, 0.71, 0.54, and 0.23 µm, respectively. Then, the system was compared with a commercial reference aerodynamic particle sizer (APS) in the environment where the number concentration and the average size of TiO2 particles were changing. The present system resolved peak size and geometric standard deviation of particles to within 11.2%, and 6.3%, respectively, indicating that the system can be used to accurately monitor submicron particle size distributions in real time.

11.
J Phys Chem A ; 122(3): 773-779, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29241331

RESUMO

Photodissociation dynamics of benzaldehyde-d5 (C6D5CHO) at 205 nm was investigated by measuring laser-induced fluorescence spectra of fragment H atoms. From the Doppler-broadened spectra, center-of-mass translational energy release into the C6D5CO + H channel was obtained as 68.8 ± 5.8 kJ/mol with the absolute quantum yield, 0.17 ± 0.03. The observed translational energy was successfully estimated from two-dimensional potential energy surfaces along the C-H dissociation coordinate and the CCO bent angle and the out-of-plane H angle, respectively calculated at the B3LYP/cc-pVDZ level. The dissociation of H should take place along the triplet surface via intersystem crossing from S1 after internal conversion from the initially excited S3 state and on the triplet surface, the dissociation proceeds along the CCO bent-linear-bent configuration with H being planar to nonplanar pathway.

12.
Phys Chem Chem Phys ; 19(45): 30362-30369, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29115323

RESUMO

One-photon vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy was used to characterize the essential conformations of tetrahydrofuran (THF) and thus determine the stereochemistry of the furanose ring constituting the backbones of DNA and RNA. Since the VUV-MATI spectrum of THF exactly corresponds to the vibrational spectrum of the gas-phase THF cation, the above cation was detected using time-of-flight mass spectrometry featuring the delayed pulsed-field ionization of the target in high Rydberg states by scanning the wavelength of the VUV pulse across the region of the vibrational spectrum. The position of the 0-0 band in the recorded VUV-MATI spectrum was extrapolated to the zero-field limit, allowing the adiabatic ionization energy of THF to be accurately estimated to be 9.4256 ± 0.0004 eV. The above ionization was assigned to a transition between C2-symmetric neutral (S0) and cationic (D0) ground states. The potential energy surfaces associated with molecular pseudorotation in the above states were constructed at the B3LYP/aug-cc-pVDZ level, being in good agreement with experimental observations. The twisted (C2-symmetric) and bent (CS-symmetric) conformers of the S0 state were predicted to be separated by a small interconversion barrier, whereas the D0 state exclusively existed in the C2 conformation. Based on the above, the peaks in the MATI spectrum were successfully assigned based on the Franck-Condon factors and vibrational frequencies calculated by varying the geometrical parameters of the C2 conformation, which determines the precise molecular structure of the THF cation.

13.
J Phys Chem A ; 121(5): 1163-1167, 2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28086263

RESUMO

We have measured the high-resolution vibrational spectra of a thietane (trimethylene sulfide) cation in the gas phase by employing the vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopic technique. Peaks in the low-frequency region of the observed MATI spectrum of thietane originate from a progression of the ring-puckering vibrational mode (typical in small heterocyclic molecules), which is successfully reproduced by quantum-chemical calculations with 1D symmetric double-well potentials along the ring puckering coordinates on both the S0 and D0 states, the ground electronic states of neutral and cation of thietane, respectively. The values of the interconversion barrier and the ring-puckering angle on the S0 state, the parameters used for the quantum-chemical calculations, were assumed to be 274 cm-1 and 26°. The barrier and the angle on the D0 state, however, are found to be 48.0 cm-1 and 18.2°, respectively, where such small barrier height and puckering angle for the cation suggest that the conformation of thietane cation on the D0 state should be more planar than that of the thietane neutral.

14.
J Phys Chem A ; 119(36): 9474-80, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26294176

RESUMO

Detailed dissociation dynamics of H(D) from acetic acid-d1 (CH3COOD) has been investigated upon electronic excitation to the (1)(n,π*), S1 state at 205 nm by measuring laser-induced fluorescence spectra of the fragment H(D) atoms. In addition, quantum yields for the H(D) atom dissociation channels, CH3COO + D and CH2COOD + H, were measured, which are 0.07 ± 0.03 and 0.17 ± 0.03, respectively. From the Doppler broadened spectra, the center-of-mass translational energy releases into products were obtained. To determine the detailed dissociation dynamics, two-dimensional potential energy surfaces along the reaction coordinate including the coordinate directly coupled to the dissociation coordinate were examined by employing quantum chemical calculations. For the CH3COO + D channel, the coupled coordinate is the dihedral angle of D against the COO plane. The dissociation of D(H) from acetic acid should take place along the triplet surface via surface crossing from the initially excited S1 state. Along the triplet surface, an exit channel barrier exists, which originates from the structural difference between the T1 and the product asymptotes, especially the dihedral angle of D against the COO plane. The observed translational energy releases were successfully estimated by the barrier impulsive model based upon the calculated two-dimensional potential energy surfaces at the B3LYP/cc-pVDZ level of theory.

15.
J Chem Phys ; 141(17): 174303, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25381510

RESUMO

Ionization energies and cationic structures of pyridine were intensively investigated utilizing one-photon mass-analyzed threshold ionization (MATI) spectroscopy with vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. The present one-photon high-resolution MATI spectrum of pyridine demonstrated a much finer and richer vibrational structure than that of the previously reported two-photon MATI spectrum. From the MATI spectrum and photoionization efficiency curve, the accurate ionization energy of the ionic ground state of pyridine was confidently determined to be 73,570 ± 6 cm(-1) (9.1215 ± 0.0007 eV). The observed spectrum was almost completely assigned by utilizing Franck-Condon factors and vibrational frequencies calculated through adjustments of the geometrical parameters of cationic pyridine at the B3LYP/cc-pVTZ level. A unique feature unveiled through rigorous analysis was the prominent progression of the 10 vibrational mode, which corresponds to in-plane ring bending, and the combination of other totally symmetric fundamentals with the ring bending overtones, which contribute to the geometrical change upon ionization. Notably, the remaining peaks originate from the upper electronic state ((2)A2), as predicted by high-resolution photoelectron spectroscopy studies and symmetry-adapted cluster configuration interaction calculations. Based on the quantitatively good agreement between the experimental and calculated results, it was concluded that upon ionization the pyridine cation in the ground electronic state should have a planar structure of C(2v) symmetry through the C-N axis.

16.
Phys Chem Chem Phys ; 16(4): 1590-6, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24317499

RESUMO

The vibrational spectrum of a pyrimidine cation in the ground electronic state was obtained using vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy. Accurate ionization energy of pyrimidine was determined from the 0-0 band position in the VUV-MATI spectrum and was measured by varying the PFI field to the zero field limit, which is 75,258 ± 7 cm(-1) (9.3308 eV). The spectrum displayed a large number of vibrational peaks, which could be nearly completely assigned through Franck-Condon analysis performed with variations of geometrical parameters at the B3LYP/cc-pVTZ level. Based on the excellent agreement between experimental and calculated results, the definite geometry of the pyrimidine cation in the ground electronic state was determined to be a planar structure with C2v symmetry with a decreased N-N distance in the ring.


Assuntos
Pirimidinas/química , Cátions/química , Espectrometria de Massas , Estrutura Molecular , Teoria Quântica , Espectrofotometria Ultravioleta , Vácuo
17.
J Phys Chem A ; 114(5): 2053-8, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20050711

RESUMO

Photodissociation dynamics of propargyl alcohol (HC identical withC-CH(2)OH) at 212 nm in the gas phase was investigated by measuring rotationally resolved laser-induced fluorescence spectra of OH ((2)Pi) radicals exclusively produced in the ground electronic state. From the spectra, internal energies of OH and translational energy releases to products were determined. The electronic transition at 212 nm responsible for the OH dissociation was assigned as the pi(C[triple bond]C) --> pi*(C[triple bond]C) transition by time-dependent density functional theory calculations. In addition, an energy barrier at the exit channel along the reaction coordinate on the excited electronic potential energy surface was identified by ab initio calculations. The observed energy partitioning among the fragments was successfully modeled by the so-called "barrier-impulsive model".


Assuntos
Alcinos/química , Radical Hidroxila/química , Propanóis/química , Termodinâmica , Simulação por Computador , Gases/química , Fotoquímica , Teoria Quântica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...