Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38032313

RESUMO

Suppressing the dark current density (Jd) while maintaining sufficient charge transport is important for improving the specific detectivity (D*) and dynamic characteristics of organic photodetectors (OPDs). In this study, we synthesized three novel small-molecule acceptors (SMAs) densely surrounded by insulating alkyl side chains to minimize the Jd in OPDs. Introducing trialkylated N-annulated perylene diimide as a terminal moiety to the alkylated π-conjugated core structure was highly efficient in suppressing Jd in the devices, resulting in an extremely low Jd of 4.60 × 10-11 A cm-2 and 10-100 times improved D* values in the devices. In addition, SMAs with a geometrically aligned backbone structure exhibited better intermolecular ordering in the blended films, resulting in 3-10 times as high responsivity (R) values in the OPDs. Outstanding OPD performances with a D* of 8.09 × 1012 Jones, -3 dB cutoff frequency of 205.2 kHz, and rising response time of 16 µs were achieved under a 530 nm illumination in photoconductive mode. Geometrically aligned core-terminal SMAs densely surrounded by insulating alkyl side chains are promising for improving the static and dynamic properties of OPDs.

3.
Nat Nanotechnol ; 17(9): 952-958, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35953539

RESUMO

Colloidal quantum dots (QDs) stand at the forefront of a variety of photonic applications given their narrow spectral bandwidth and near-unity luminescence efficiency. However, integrating luminescent QD films into photonic devices without compromising their optical or transport characteristics remains challenging. Here we devise a dual-ligand passivation system comprising photocrosslinkable ligands and dispersing ligands to enable QDs to be universally compatible with solution-based patterning techniques. The successful control over the structure of both ligands allows the direct patterning of dual-ligand QDs on various substrates using commercialized photolithography (i-line) or inkjet printing systems at a resolution up to 15,000 pixels per inch without compromising the optical properties of the QDs or the optoelectronic performance of the device. We demonstrate the capabilities of our approach for QD-LED applications. Our approach offers a versatile way of creating various structures of luminescent QDs in a cost-effective and non-destructive manner, and could be implemented in nearly all commercial photonics applications where QDs are used.

4.
Nat Commun ; 11(1): 2874, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513918

RESUMO

Establishing multi-colour patterning technology for colloidal quantum dots is critical for realising high-resolution displays based on the material. Here, we report a solution-based processing method to form patterns of quantum dots using a light-driven ligand crosslinker, ethane-1,2-diyl bis(4-azido-2,3,5,6-tetrafluorobenzoate). The crosslinker with two azide end groups can interlock the ligands of neighbouring quantum dots upon exposure to UV, yielding chemically robust quantum dot films. Exploiting the light-driven crosslinking process, different colour CdSe-based core-shell quantum dots can be photo-patterned; quantum dot patterns of red, green and blue primary colours with a sub-pixel size of 4 µm × 16 µm, corresponding to a resolution of >1400 pixels per inch, are demonstrated. The process is non-destructive, such that photoluminescence and electroluminescence characteristics of quantum dot films are preserved after crosslinking. We demonstrate that red crosslinked quantum dot light-emitting diodes exhibiting an external quantum efficiency as high as 14.6% can be obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...