Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Dev Technol ; 27(4): 414-424, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35467467

RESUMO

A self-nanoemulsifying drug delivery system (SNEDDS) was developed to enhance the dissolution and oral bioavailability (BA) of revaprazan (RVP). Various SNEDDSs containing 200 mg of RVP were formulated using Capmul MCM, Tween 80, and Brij L4, and they were characterized according to their size, polydispersity index, and dissolution behavior. Dissolution rates of all SNEDDS formulations significantly (p < 0.05) improved with the formation of nanoemulsion with monodispersity. Formulation D resulted in RVP dissolution exceeding 70% at 2 h. Compared to raw RVP, SNEDDS exhibited a 4.8- to 7.4-fold improved effective permeability coefficient (Peff) throughout the intestine in the in situ single pass intestinal permeability study and a 5.1-fold increased oral BA in the in vivo oral absorption assessment in rats. To evaluate the degree of lymphatic uptake, cycloheximide (CYC), a chylomicron flowing blocker, was pretreated prior to the experiment. This pretreatment barely affected the absorption of raw RVP; however, it greatly influenced the absorption of SNEDDS, resulting in an approximately 40% reduction in both the Peff value and oral BA representing lymphatic transport. Thus, we suggest that the SNEDDS formulation is a good candidate for improving oral absorption of RVP through enhanced lymphatic uptake.


Assuntos
Nanopartículas , Administração Oral , Animais , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Emulsões , Tamanho da Partícula , Pirimidinonas , Ratos , Solubilidade , Tetra-Hidroisoquinolinas
3.
Eur J Pharm Sci ; 163: 105885, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34022408

RESUMO

Intravesical instillation of a poloxamer 407 (PLX)-based hydrogel offers advantages such as thermo-sensitivity and sol-to-gel transition, but its utility is limited by urinary obstruction and insufficient bladder residence time. To overcome these obstacles, a floating PLX-hydrogel (FPH) was developed using sodium bicarbonate (BC) as a floating agent and hyaluronic acid (HA) as a gel strength modulator. The FPH composition was optimized using the Box-Behnken design with three independent variables: X1 [PLX concentration, 23.91%], X2 [BC concentration, 5.15%], and X3 [HA concentration, 3.49%]. The quadratic model was the best fit (desirability function, 0.623), resulting in response parameters of Y1 [floating time, 53.7 s], Y2 [gelation temperature gap, 20.3°C], and Y3 [duration time of gel, 396.7 min]. Rheological observations revealed the mechanical rigidity (storage modulus > loss modulus at elevated temperature) of the optimized FPH (phase transition temperature, 15.08°C). Gel erosion and drug release studies were performed using the gravimetric method; the remaining FPH fraction decreased exponentially with time, and gemcitabine release was biphasic and surface erosion-controlled. In vivo buoyancy was evaluated in rats using ultrasonography; these results were similar to those of the in vitro floating behavior. Thus, optimized FPH for intravesical instillation is a prospective option for bladder cancer treatment.


Assuntos
Hidrogéis , Poloxâmero , Administração Intravesical , Animais , Liberação Controlada de Fármacos , Estudos Prospectivos , Ratos
4.
Int J Nanomedicine ; 16: 1245-1259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633449

RESUMO

PURPOSE: To enhance the oral bioavailability of revaprazan (RVP), a novel solid, supersaturable micelle (SSuM) was developed. METHODS: Surfactants and solid carriers were screened based on a solubility and a flowability test, respectively. Supersaturating agents, including Poloxamer 407 (P407), were screened. The SSuM was optimized using a Box-Behnken design with three independent variables, including Gelucire 44/14:Brij L4 (G44/BL4; X1) and the amounts of Florite PS-10 (FLO; X2) and Vivapur 105 (VP105; X3), and three response variables, ie, dissolution efficiency at 30 min (Y1), dissolution enhancing capacity (Y2), and Carr's index (Y3). The solid state property was evaluated, and a dissolution test was conducted. RVP, Revanex®, solid micelle (P407-free from the composition of SSuM), and SSuM were orally administrated to rats (RVP 20 mg equivalent/kg) for in vivo pharmacokinetic study. RESULTS: G44 and BL4 showed great solubility, with a critical micelle concentration range of 119.2-333.0 µg/mL. P407 had an excellent supersaturating effect. FLO and VP105 were selected as solid carriers, with a critical solidifying ratio (g/mL) of 0.30 and 0.91, respectively. With optimized values of X1 (-0.41), X2 (0.31), and X3 (-0.78), RVP (200 mg)-containing SSuM consisting of G44 (253.8 mg), BL4 (106.2 mg), FLO (99.3 mg), VP105 (199.8 mg), and P407 (40 mg) was developed, resulting in Y1 (40.3%), Y2 (0.008), and Y3 (12.3%). RVP existed in an amorphous state in the optimized SSuM, and the SSuM formed a nanosized dispersion in the aqueous phase, with approximately 71.7% dissolution at 2 h. The optimized SSuM improved the relative bioavailability of RVP in rats by approximately 478%, 276%, and 161% compared to raw RVP, Revanex®, and solid micelle, respectively. CONCLUSION: The optimized SSuM has great potential for the development of solidified formulations of poorly water-soluble drugs with improved oral absorption.


Assuntos
Micelas , Pirimidinonas/farmacologia , Tetra-Hidroisoquinolinas/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Composição de Medicamentos , Masculino , Modelos Teóricos , Tamanho da Partícula , Polietilenoglicóis , Pirimidinonas/farmacocinética , Ratos Sprague-Dawley , Solubilidade , Soluções , Tensoativos/química , Tetra-Hidroisoquinolinas/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...