Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 5262, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644026

RESUMO

Measuring, recording and analyzing spectral information of materials as its unique finger print using a ubiquitous smartphone has been desired by scientists and consumers. We demonstrated it as drug classification by chemical components with smartphone Raman spectrometer. The Raman spectrometer is based on the CMOS image sensor of the smartphone with a periodic array of band pass filters, capturing 2D Raman spectral intensity map, newly defined as spectral barcode in this work. Here we show 11 major components of drugs are classified with high accuracy, 99.0%, with the aid of convolutional neural network (CNN). The beneficial of spectral barcodes is that even brand name of drug is distinguishable and major component of unknown drugs can be identified. Combining spectral barcode with information obtained by red, green and blue (RGB) imaging system or applying image recognition techniques, this inherent property based labeling system will facilitate fundamental research and business opportunities.


Assuntos
Análise Espectral Raman , Comércio , Citoplasma , Dedos , Smartphone , Análise Espectral Raman/instrumentação
3.
Adv Sci (Weinh) ; 10(5): e2205113, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36453578

RESUMO

Augmenting contact lenses with sensing capabilities requires incorporating multiple functionalities within a diminutive device. Inspired by multifunctional biophotonic nanostructures of glasswing butterflies, a nanostructured scleral lens with enhanced optical, bactericidal, and sensing capabilities is reported. When used in conjunction with a smartphone-integrated Raman spectrometer, the feasibility of point-of-care applications is demonstrated. The bioinspired nanostructures made on parylene films are mounted on the anterior and posterior side of a scleral lens to create a nanostructured lens. Compared to unstructured parylene, nanostructured parylene minimizes glare by 4.3-fold at large viewing angles up to 80o . When mounted on a scleral lens, the nanostructures block 2.8-fold more ultraviolet (UVA) light while offering 1.1-fold improved transmission in the visible regime. Furthermore, the nanostructures exhibit potent bactericidal activity against Escherichia coli, killing 89% of tested bacteria within 4 h. The same nanostructures, when gold-coated, are used to perform rapid label-free multiplex detection of lysozyme and lactoferrin, the protein biomarkers of the chronic dry eye disease, in whole human tears using drop-coating deposition Raman spectroscopy. The detection of both proteins in whole human tear samples from different subjects using the nanostructured lens produced excellent correlation with commercial enzyme-based assays while simultaneously displaying a 1.5-fold lower standard deviation.


Assuntos
Borboletas , Animais , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Smartphone , Proteínas , Biomarcadores
4.
Science ; 361(6397): 57-60, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29976819

RESUMO

Single-photon switches and transistors generate strong photon-photon interactions that are essential for quantum circuits and networks. However, the deterministic control of an optical signal with a single photon requires strong interactions with a quantum memory, which has been challenging to achieve in a solid-state platform. We demonstrate a single-photon switch and transistor enabled by a solid-state quantum memory. Our device consists of a semiconductor spin qubit strongly coupled to a nanophotonic cavity. The spin qubit enables a single 63-picosecond gate photon to switch a signal field containing up to an average of 27.7 photons before the internal state of the device resets. Our results show that semiconductor nanophotonic devices can produce strong and controlled photon-photon interactions that could enable high-bandwidth photonic quantum information processing.

5.
Sci Rep ; 7(1): 14753, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116150

RESUMO

The ability of metasurfaces to manipulate light at the subwavelength scale offers unprecedented functionalities for passive and active lasing devices. However, applications of metasurfaces to optical devices are rare due to fabrication difficulties. Here, we present quantum dot light emitting diodes (QDLEDs) with a metasurface-integrated metal electrode and demonstrate microscopically controlled LED emission. By incorporating slot-groove antennas into the metal electrode, we show that LED emission from randomly polarized QD sources can be polarized and directed at will. Utilizing the relation between polarization and emission direction, we also demonstrate microscopic LED beam splitting through the selective choice of polarization.

6.
ACS Nano ; 10(6): 6100-7, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27232340

RESUMO

Although two-dimensional monolayer transition-metal dichalcogenides reveal numerous unique features that are inaccessible in bulk materials, their intrinsic properties are often obscured by environmental effects. Among them, work function, which is the energy required to extract an electron from a material to vacuum, is one critical parameter in electronic/optoelectronic devices. Here, we report a large work function modulation in MoS2 via ambient gases. The work function was measured by an in situ Kelvin probe technique and further confirmed by ultraviolet photoemission spectroscopy and theoretical calculations. A measured work function of 4.04 eV in vacuum was converted to 4.47 eV with O2 exposure, which is comparable with a large variation in graphene. The homojunction diode by partially passivating a transistor reveals an ideal junction with an ideality factor of almost one and perfect electrical reversibility. The estimated depletion width obtained from photocurrent mapping was ∼200 nm, which is much narrower than bulk semiconductors.

7.
Nat Nanotechnol ; 11(6): 539-544, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26854569

RESUMO

Interactions between single spins and photons are essential for quantum networks and distributed quantum computation. Achieving spin-photon interactions in a solid-state device could enable compact chip-integrated quantum circuits operating at gigahertz bandwidths. Many theoretical works have suggested using spins embedded in nanophotonic structures to attain this high-speed interface. These proposals implement a quantum switch where the spin flips the state of the photon and a photon flips the spin state. However, such a switch has not yet been realized using a solid-state spin system. Here, we report an experimental realization of a spin-photon quantum switch using a single solid-state spin embedded in a nanophotonic cavity. We show that the spin state strongly modulates the polarization of a reflected photon, and a single reflected photon coherently rotates the spin state. These strong spin-photon interactions open up a promising direction for solid-state implementations of high-speed quantum networks and on-chip quantum information processors using nanophotonic devices.

8.
Phys Rev Lett ; 113(2): 027403, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062230

RESUMO

We demonstrate resonant coupling of a Mollow triplet sideband to an optical cavity in the strong coupling regime. We show that, in this regime, the resonant sideband is strongly enhanced relative to the detuned sideband. Furthermore, the linewidth of the Mollow sidebands exhibits a highly nonlinear pump power dependence when tuned across the cavity resonance due to strong resonant interactions with the cavity mode. We compare our results to calculations using the effective phonon master equation and show that the nonlinear linewidth behavior is caused by strong coherent interaction with the cavity mode that exists only when the Mollow sideband is near cavity resonance.

9.
Opt Lett ; 37(22): 4678-80, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23164877

RESUMO

We present a detailed experimental characterization of the spectral and spatial structure of the confined optical modes for oxide-apertured micropillar cavities, showing good-quality Hermite-Gaussian profiles, easily mode-matched to external fields. We further derive a relation between the frequency splitting of the transverse modes and the expected Purcell factor. Finally, we describe a technique to retrieve the profile of the confining refractive index distribution from the spatial profiles of the modes.

10.
Opt Express ; 20(22): 24714-26, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23187235

RESUMO

Hybrid quantum information protocols are based on local qubits, such as trapped atoms, NV centers, and quantum dots, coupled to photons. The coupling is achieved through optical cavities. Here we demonstrate far-field optimized H1 photonic crystal membrane cavities combined with an additional back reflection mirror below the membrane that meet the optical requirements for implementing hybrid quantum information protocols. Using numerical optimization we find that 80% of the light can be radiated within an objective numerical aperture of 0.8, and the coupling to a single-mode fiber can be as high as 92%. We experimentally prove the unique external mode matching properties by resonant reflection spectroscopy with a cavity mode visibility above 50%.

11.
Phys Rev Lett ; 108(22): 227402, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23003653

RESUMO

We demonstrate fast nonlinear optical switching between two laser pulses with as few as 140 photons of pulse energy by utilizing strong coupling between a single quantum dot (QD) and a photonic crystal cavity. The cavity-QD coupling is modified by a detuned pump pulse, resulting in a modulation of the scattered and transmitted amplitude of a time synchronized probe pulse that is resonant with the QD. The temporal switching response is measured to be as fast as 120 ps, demonstrating the ability to perform optical switching on picosecond timescales.

12.
Nanotechnology ; 23(28): 285201, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22728309

RESUMO

Acousto-electric charge conveyance induced by a surface acoustic wave (SAW) is employed to dissociate photogenerated excitons. Over macroscopic distances, both electrons and holes are injected sequentially into a remotely positioned, isolated and high quality quantum emitter, a self-assembled quantum post. This process is found to be highly efficient and to exhibit improved stability at high acoustic powers when compared to direct optical pumping at the position of the quantum post. These characteristics are attributed to the wide matrix quantum well in which charge conveyance occurs and to the larger number of carriers available for injection in the remote configuration, respectively. The emission of such pumped quantum posts is dominated by recombination of neutral excitons and fully directional when the propagation direction of the SAW and the position of the quantum post are reversed.

13.
Nano Lett ; 12(3): 1115-20, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21517124

RESUMO

"Quantum posts" are roughly cylindrical semiconductor nanostructures that are embedded in an energetically shallower "matrix" quantum well of comparable thickness. We report measurements of voltage-controlled charging and terahertz absorption of 30 nm thick InGaAs quantum wells and posts. Under flat-band (zero-electric field) conditions, the quantum posts each contain approximately six electrons, and an additional ~2.4 × 10(11) cm(-2) electrons populate the quantum well matrix. In this regime, absorption spectra show peaks at 3.5 and 4.8 THz (14 and 19 meV) whose relative amplitude depends strongly on temperature. These peaks are assigned to intersubband transitions of electrons in the quantum well matrix. A third, broader feature has a temperature-independent amplitude and is assigned to an absorption involving quantum posts. Eight-band k·p calculations incorporating the effects of strain and Coulomb repulsion predict that the electrons in the posts strongly repel the electrons in the quantum well matrix, "perforating" the electron gas. The strongest calculated transition, which has a frequency close to the center of the quantum post related absorption at 5 THz (20 meV), is an ionizing transition from a filled state to a quasi-bound state that can easily scatter to empty states in the quantum well matrix.


Assuntos
Arsenicais/química , Gases/química , Índio/química , Modelos Químicos , Pontos Quânticos , Semicondutores , Radiação Terahertz , Absorção , Simulação por Computador , Elétrons , Eletricidade Estática
14.
Opt Express ; 19(3): 2589-98, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21369079

RESUMO

We demonstrate strong coupling between two indium arsenide (InAs) quantum dots (QDs) and a photonic crystal cavity by using a magnetic field as a frequency tuning method. The magnetic field causes a red shift of an exciton spin state in one QD and a blue shift in the opposite exciton spin state of the second QD, enabling them to be simultaneously tuned to the same cavity resonance. This method can match the emission frequency of two QDs separated by detunings as large as 1.35 meV using a magnetic field of up to 7 T. By controlling the detuning between the two QDs we measure the vacuum Rabi splitting (VRS) both when the QDs are individually coupled to the cavity, as well as when they are coupled to the cavity simultaneously. In the latter case the oscillator strength of two QDs shows a collective behavior, resulting in enhancement of the VRS as compared to the individual cases. Experimental results are compared to theoretical calculations based on the solution to the full master equation and found to be in excellent agreement.


Assuntos
Magnetismo/instrumentação , Modelos Teóricos , Pontos Quânticos , Refratometria/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
15.
Opt Express ; 19(6): 5551-8, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21445193

RESUMO

We demonstrate a reversibly tunable photonic crystal quantum dot laser using a photochromic thin film. The laser is composed of a photonic crystal cavity with a bare cavity Q as high as 4500 coupled to a high density ensemble of indium arsenide quantum dots. By depositing a thin layer of photochromic material on the photonic crystal cavities, the laser can be optically tuned smoothly and reversibly over a wavelength range of 2.68 nm. Lasing is observed at temperatures as high as 80 K in the 900-1000 nm near-infrared wavelength range. The spontaneous emission coupling factor is measured to be as high as ß=0.41, indicating that the laser operates in the high-ß regime.

16.
Nano Lett ; 10(9): 3399-407, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20722408

RESUMO

Individual self-assembled quantum dots and quantum posts are studied under the influence of a surface acoustic wave. In optical experiments we observe an acoustically induced switching of the occupancy of the nanostructures along with an overall increase of the emission intensity. For quantum posts, switching occurs continuously from predominantly charged excitons (dissimilar number of electrons and holes) to neutral excitons (same number of electrons and holes) and is independent of whether the surface acoustic wave amplitude is increased or decreased. For quantum dots, switching is nonmonotonic and shows a pronounced hysteresis on the amplitude sweep direction. Moreover, emission of positively charged and neutral excitons is observed at high surface acoustic wave amplitudes. These findings are explained by carrier trapping and localization in the thin and disordered two-dimensional wetting layer on top of which quantum dots nucleate. This limitation can be overcome for quantum posts where acoustically induced charge transport is highly efficient in a wide lateral matrix-quantum well.

17.
Phys Rev Lett ; 104(4): 047402, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20366737

RESUMO

The resonance frequency of an InAs quantum dot strongly coupled to a GaAs photonic-crystal cavity was electrically controlled via the quadratic quantum confined Stark effect. Stark shifts up to 0.3 meV were achieved using a lateral Schottky electrode that created a local depletion region at the location of the quantum dot. We report switching of a probe laser coherently coupled to the cavity up to speeds as high as 150 MHz, limited by the RC constant of the transmission line. The coupling strength g and the magnitude of the Stark shift with electric field were investigated while coherently probing the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...