Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042863

RESUMO

Detecting and distinguishing between hazardous gases with similar odors by using conventional sensor technology for safeguarding human health and ensuring food safety are significant challenges. Bulky, costly, and power-hungry devices, such as that used for gas chromatography-mass spectrometry (GC-MS), are widely employed for gas sensing. Using a single chemiresistive semiconductor or electric nose (e-nose) gas sensor to achieve this objective is difficult, mainly because of its selectivity issue. Thus, there is a need to develop new materials with tunable and versatile sensing characteristics. Phase engineering of two-dimensional materials to better utilize their physiochemical properties has attracted considerable attention. Here, we show that MoSe2 phase-transition/CeO2 composites can be effectively used to distinguish ammonia (NH3) and triethylamine (TEA) at room temperature. The phase transition of nanocomposite samples from semimetallic (1T) to semiconducting (2H) prepared at different synthesis temperatures is confirmed via X-ray photoelectron spectroscopy (XPS). A composite sensor in which the 2H phase of MoSe2 is predominant lacks discrimination capability and is less responsive to NH3 and TEA. An MoSe2/CeO2 composite sensor with a higher 1T phase content exhibits high selectivity for NH3, whereas one with a higher 2H phase content (2H > 1T) shows more selective behavior toward TEA. For example, for 50% relative humidity, the MoSe2/CeO2 sensor's signal changes from the baseline by 45% and 58% for 1 ppm of NH3 and TEA, respectively, indicating a low limit of detection (LOD) of 70 and 160 ppb, respectively. The composites' superior sensing characteristics are mainly attributed to their large specific surface area, their numerous active sites, presence of defects, and the n-n type heterojunction between MoSe2 and CeO2. The sensing mechanism is elucidated using Raman spectroscopy, XPS, and GC-MS results. Their phase-transition characteristics render MoSe2/CeO2 sensors promising for use in distributed, low-cost, and room-temperature sensor networks, and they offer new opportunities for the development of integrated advanced smart sensing technologies for environmental and healthcare.

2.
Nanotechnology ; 35(33)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38744265

RESUMO

Transition metal dichalcogenides (TMDs) with a two-dimensional (2D) structure and semiconducting features are highly favorable for the production of NH3gas sensors. Among the TMD family, WS2, WSe2, MoS2, and MoSe2exhibit high conductivity and a high surface area, along with high availability, reasons for which they are favored in gas-sensing studies. In this review, we have discussed the structure, synthesis, and NH3sensing characteristics of pristine, decorated, doped, and composite-based WS2, WSe2, MoS2, and MoSe2gas sensors. Both experimental and theoretical studies are considered. Furthermore, both room temperature and higher temperature gas sensors are discussed. We also emphasized the gas-sensing mechanism. Thus, this review provides a reference for researchers working in the field of 2D TMD gas sensors.

3.
Chemosphere ; 352: 141234, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278446

RESUMO

Gas sensors are extensively employed for monitoring and detection of hazardous gases and vapors. Many of them are produced on rigid substrates, but flexible and wearable gas sensors are needed for intriguing usage including the internet of things (IoT) and medical devices. The materials with the greatest potential for the fabrication of flexible and wearable gas sensing devices are two-dimensional (2D) semiconducting nanomaterials, which consist of graphene and its substitutes, transition metal dichalcogenides, and MXenes. These types of materials have good mechanical flexibility, high charge carrier mobility, a large area of surface, an abundance of defects and dangling bonds, and, in certain instances adequate transparency and ease of synthesis. In this review, we have addressed the different 2D nonmaterial properties for gas sensing in the context of fabrication of flexible/wearable gas sensors. We have discussed the sensing performance of flexible/wearable gas sensors in various forms such as pristine, composite and noble metal decorated. We believe that content of this review paper is greatly useful for the researchers working in the research area of fabrication of flexible/wearable gas sensors.


Assuntos
Nanoestruturas , Elementos de Transição , Dispositivos Eletrônicos Vestíveis , Nanoestruturas/química , Metais , Gases
4.
ACS Appl Mater Interfaces ; 16(5): 6098-6112, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38266747

RESUMO

The optimal combination of metal ions and ligands for sensing materials was estimated by using a data-driven model developed in this research. This model utilized advanced computational algorithms and a data set of 100,000 literature pieces. The semiconductor metal oxide (SMO) that is most suitable for detecting triethylamine (TEA) with the highest probability was identified by using the Word2vec model, which employed the maximum likelihood method. The loss function of the probability distribution was minimized in this process. Based on the analysis, a novel hierarchical nanostructured tungsten-based coordination with 2,5-dihydroxyterephthalic acid (W-DHTA) was synthesized. This synthesis involved a postsynthetic hydrothermal treatment (psHT) and the self-assembly of tungsten oxide nanorods. The tungsten oxide nanorods had a significant number of oxygen vacancies. Various techniques were used to characterize the synthesized material, and its sensing performance toward volatile organic compound (VOC) gases was evaluated. The results showed that the functionalized tungsten oxide exhibited an exceptionally high sensitivity and selectivity toward TEA gas. Even in a highly disturbed environment, the detection limit for TEA gas was as low as 40 parts per billion (ppb). Furthermore, our findings suggest that the control of oxygen vacancies in sensing materials plays a crucial role in enhancing the sensitivity and selectivity of gas sensors. This approach was supported by the utilization of density functional theory (DFT) computation and machine learning algorithms to assess and analyze the performance of sensor devices, providing a highly efficient and universally applicable research methodology for the development and design of next-generation functional materials.

5.
ACS Sens ; 8(12): 4664-4675, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38064547

RESUMO

Triethylamine (TEA) poses a significant threat to our health and is extremely difficult to detect at the parts-per-billion (ppb) level at room temperature. Carbon nanotubes (CNTs) are versatile materials used in chemiresistive vapor sensing. However, achieving high sensitivity and selectivity with a low detection limit remains a challenge for pristine CNTs, hindering their widespread commercial application. To address these issues, we propose functionalized multiwalled CNTs (MWCNTs) with carboxylic acid (COOH)-based sensing channels for ultrasensitive TEA detection under ambient conditions. Advanced structural analyses confirmed the necessary modification of MWCNTs after functionalization. The sensor exhibited excellent sensitivity to TEA in air, with a superior noise-free signal (10 ppb), an extremely low limit of detection (LOD ≈ 0.8 ppb), excellent repeatability, and long-term stability under ambient conditions. Moreover, the response values became more stable, demonstrating excellent humidity resistance (40-80% RH). Notably, the functionalized MWCNT sensor exhibited improved response and recovery kinetics (200 and 400 s) to 10 ppm of TEA compared to the pristine MWCNT sensor (400 and 1300 s), and the selectivity coefficient for TEA gas was improved by approximately three times against various interferants, including ammonia, formaldehyde, nitrogen dioxide, and carbon monoxide. The remarkable improvements in TEA detection were mainly associated with the large specific surface area, abundant active sites, adsorbed oxygen, and other defects. The sensing mechanism was thoroughly explained by using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and gas chromatography-mass spectrometry (GC-MS). This study provides a new platform for CNT-based chemiresistive sensors with high selectivity, low detection limits, and enhanced precision with universal potential for applications in food safety and environmental monitoring.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Umidade , Temperatura , Gases/análise
6.
Sensors (Basel) ; 23(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37960529

RESUMO

Owing to their large surface area, two-dimensional (2D) semiconducting nanomaterials have been extensively studied for gas-sensing applications in recent years. In particular, the possibility of operating at room temperature (RT) is desirable for 2D gas sensors because it significantly reduces the power consumption of the sensing device. Furthermore, RT gas sensors are among the first choices for the development of flexible and wearable devices. In this review, we focus on the 2D MXenes used for the realization of RT gas sensors. Hence, pristine, doped, decorated, and composites of MXenes with other semiconductors for gas sensing are discussed. Two-dimensional MXene nanomaterials are discussed, with greater emphasis on the sensing mechanism. MXenes with the ability to work at RT have great potential for practical applications such as flexible and/or wearable gas sensors.

7.
Materials (Basel) ; 16(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37763510

RESUMO

Metal oxide nanowires (NWs) with a high surface area, ease of fabrication, and precise control over diameter and chemical composition are among the best candidates for the realization of resistive gas sensors. Among the different techniques used for the synthesis of materials with NW morphology, approaches based on the vapor-liquid-solid (VLS) mechanism are very popular due to the ease of synthesis, low price of starting materials, and possibility of branching. In this review article, we discuss the gas-sensing features of metal oxide NWs grown by the VLS mechanism, with emphasis on the growth conditions and sensing mechanism. The growth and sensing performance of SnO2, ZnO, In2O3, NiO, CuO, and WO3 materials with NW morphology are discussed. The effects of the catalyst type, growth temperature, and other variables on the morphology and gas-sensing performance of NWs are discussed.

8.
J Hazard Mater ; 459: 132153, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37506649

RESUMO

This study addresses the concerns regarding the cross-sensitivity of metal oxide sensors by building an array of sensors and subsequently utilizing machine earning techniques to analyze the data from the sensor arrays. Sensors were built using In2O3, Au-ZnO, Au-SnO2, and Pt-SnO2 and they were operated simultaneously in the presence of 25 different concentrations of nitrogen dioxide (NO2), carbon monoxide (CO), and their mixtures. To investigate the effects of humidity, experiments were conducted to detect 13 distinct CO and NO2 gas combinations in atmospheres with 40% and 90% relative humidity. Principal component analysis was performed for the normalized resistance variation collected for a particular gas atmosphere over a certain period, and the results were used to train deep neural network-based models. The dynamic curves produced by the sensor array were treated as pixelated images and a convolutional neural network was adopted for classification. An accuracy of 100% was achieved using both models during cross-validation and testing. The results indicate that this novel approach can eliminate the time-consuming feature extraction process.

9.
Sci Rep ; 13(1): 7880, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188745

RESUMO

We report on the layer-dependent stability of muscovite-type two-dimensional (2D) mica nanosheets (KAl3Si3O10(OH)2). First-principles calculations on mica nanosheets with different layer thicknesses (n = 1, 2, and 3) reveal their layer-dependent stability; odd-numbered 2D mica nanosheets are more stable than even-numbered ones, and the preferable stability of odd-numbered layers originates from electronic effects. A core-shielding model is proposed with a reasonable assumption, successfully proving the instability of the even-numbered mica nanosheets. Raman imaging supports that the population of odd-numbered mica nanosheets is predominant in exfoliated mica products. The alternating charge states with odd/even layers were evidenced by Kelvin probe force microscopy. We also demonstrate a unique photocatalytic degradation, opening new doors for environmental applications of mica nanosheets.

10.
ACS Sens ; 8(1): 228-242, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36630305

RESUMO

3-Hydroxy-2-butanone is one of the biomarkers of Listeria monocytogenes, which is quite important for the intelligent detection of 3H-2B. However, it is still a challenge to fabricate sensing materials obtaining excellent sensitivity and selectivity under the ppb-level detection limit. Herein, a plasma-assisted synthetic approach was proposed for the construction of hierarchical nanostructures and the simultaneous loading of TAPP-COFs, which could reduce interlayer interaction and convert the metallized sites on the surface of predesigned porphyrin rings into quantum nanoparticles. These multichannel pathways of Co-TAPP-COFs@SnO2@MWCNTs nanocages contributed to the gas adsorption and diffusion, thus enhancing the sensing behavior. The nanocages exhibited a highly specific sensing performance toward 3H-2B with the highest sensitivity (Ra/Rg = 100.9 to 0.5 ppm) in all reported sensing materials. The 3H-2B sensor presented outstanding long-term stability, and the detection limit was 100 ppb at room temperature. Furthermore, the synthesized materials were integrated into the sensing module connecting to an Internet of Things platform, providing rapid and real-time detection of 3H-2B. We also applied machine learning methods to analyze the nanocage-based sensors and found that the combined effects of modified sites on the heterointerfaces contributed to the improvement of the sensing performance.


Assuntos
Acetoína , Temperatura , Adsorção
11.
Nanomaterials (Basel) ; 12(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36234455

RESUMO

Direct ethanol fuel cells (DEFCs) are considered the most suitable direct alcohol fuel cell (DAFC) in terms of safety and current density. The obstacle to DEFC commercialization is the low reaction kinetics of ethanol (C2H5OH) oxidation because of the poor performance of the electrocatalyst. In this study, for the first time, graphene nanoplates (GNPs) were coated with sulfated zirconium dioxide (ZrO2) as adequate support for platinum (Pt) catalysts in DEFCs. A Pt/S-ZrO2-GNP electrocatalyst was prepared by a new process, polyol synthesis, using microwave heating. Field emission scanning electron microscope (FESEM) imaging revealed well-dispersed platinum nanoparticles supported on the S-ZrO2-GNP powder. Analysis of the Fourier transform infrared (FTIR) spectrometry confirmed that sulfate modified the surfaces of the sample. In X-ray diffraction (XRD), no effect of S-ZrO2 on the crystallinity net in Pt was found. Pt/S-ZrO2-GNP electrode outperformed those with unsulfated counterparts, primarily for the higher access with electron and proton, confirming sulfonating as a practical approach for increasing the performance, electrocatalytic activity, and carbon monoxide (CO) tolerance in an electrocatalyst. A considerable decrease in the voltage of the CO electrooxidation peak from 0.93 V for Pt/C to 0.76 V for the Pt/S-ZrO2-GNP electrode demonstrates that the new material increases activity for CO electrooxidation. Moreover, the as-prepared Pt/S-ZrO2-GNPs electrocatalyst exhibits high catalytic activity for the EOR in terms of electrochemical surface area with respect to Pt/ZrO2-GNPs and Pt/C (199.1 vs. 95 and 67.2 cm2.mg-1 Pt), which may be attributed to structural changes caused by the high specific surface area of graphene nanoplates catalyst support and sulfonating effect as mentioned above. Moreover, EIS results showed that the Pt/S-ZrO2-GNPs electrocatalyst has a lower charge transfer resistance than Pt/ ZrO2-GNPs and Pt/C in the presence of ethanol demonstrating an increased ethanol oxidation activity and reaction kinetics by Pt/S-ZrO2-GNPs.

12.
Sensors (Basel) ; 22(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35746151

RESUMO

Quantum dots (QDs) are used progressively in sensing areas because of their special electrical properties due to their extremely small size. This paper discusses the gas sensing features of QD-based resistive sensors. Different types of pristine, doped, composite, and noble metal decorated QDs are discussed. In particular, the review focus primarily on the sensing mechanisms suggested for these gas sensors. QDs show a high sensing performance at generally low temperatures owing to their extremely small sizes, making them promising materials for the realization of reliable and high-output gas-sensing devices.

13.
Sci Rep ; 11(1): 21527, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728751

RESUMO

This study aimed to investigate the anticancer activity of dried-pericarp water extract of fermented C. japonicus (CJ). The dried-pericarp water extracts of CJ were fermented using Aspergillus oryzae and Saccharomyces cerevisiae at 30 °C and 35 °C. The anticancer activities of both water extracts fermented at 30 °C and 35 °C using A. oryzae against FaDu cells were remarkably changed compared with unfermented dried-pericarp water extract of CJ, which has no anticancer activity. Cleaved-PARP, caspase 3, and apoptotic cells stained with annexin V/PI were significantly increased by treatment with A. oryzae extracts fermented at 30 °C. The insulin-like growth factor-binding protein 2 (IGFBP-2) protein level and mTOR phosphorylation by A. oryzae fermented extracts (AOFE) were dramatically reduced, and the expression levels of IGFBP-2 and phosphorylated mTOR were significantly increased depending on the glucose concentrations in FaDu cells. These results suggested that the cell viabilities in AOFE were restored as the glucose concentrations increased. Furthermore, it was confirmed LC/MS/MS that the content of gallic acid was increased by fermentation of Aspergillus oryzae (5.596 ± 0.1746 µg/mg) compared to the unfermented extract (1.620 ± 0.0432 µg/mg). Based on these results, the anticancer effect of AOFE was achieved through inhibition of the IGFBP-2/mTOR signaling pathway. These results suggest that AOFE may be a potential treatment for head and neck cancer.


Assuntos
Antineoplásicos/farmacologia , Aspergillus oryzae/química , Camellia/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Extratos Vegetais/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Fermentação , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Serina-Treonina Quinases TOR/genética , Células Tumorais Cultivadas , Água/química
14.
Sensors (Basel) ; 21(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34640775

RESUMO

Nanostructured semiconducting metal oxides (SMOs) are among the most popular sensing materials for integration into resistive-type gas sensors owing to their low costs and high sensing performances. SMOs can be decorated or doped with noble metals to further enhance their gas sensing properties. Ag is one of the cheapest noble metals, and it is extensively used in the decoration or doping of SMOs to boost the overall gas-sensing performances of SMOs. In this review, we discussed the impact of Ag addition on the gas-sensing properties of nanostructured resistive-based gas sensors. Ag-decorated or -doped SMOs often exhibit better responsivities/selectivities at low sensing temperatures and shorter response times than those of their pristine counterparts. Herein, the focus was on the detection mechanism of SMO-based gas sensors in the presence of Ag. This review can provide insights for research on SMO-based gas sensors.

15.
J Hazard Mater ; 416: 125841, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492797

RESUMO

Cross-interference with humidity is a major limiting factor for the accurate detection of target gases in semiconductor metal-oxide gas sensors. Under humid conditions, the surface-active sites of metal oxides for gas adsorption are easily deactivated by atmospheric water molecules. Thus, development of a new approach that can simultaneously improve the two inversely related features for realizing practical gas sensors is necessary. This paper presents a facile method to engineer surface-point defects based on proton-beam irradiation. The sensor irradiated with a proton beam shows not only an improved NO2 response but also considerable tolerance toward humidity. Based on surface analyses and DFT calculations, it is found that proton beams induce three types of point defects, which make NO2 molecules preferentially adsorb on the ZnO surfaces compared to H2O molecules, eventually enabling improved NO2 detection with less humidity interference.

16.
J Phys Condens Matter ; 33(30)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33794513

RESUMO

Gas sensor technology is widely utilized in various areas ranging from home security, environment and air pollution, to industrial production. It also hold great promise in non-invasive exhaled breath detection and an essential device in future internet of things. The past decade has witnessed giant advance in both fundamental research and industrial development of gas sensors, yet current efforts are being explored to achieve better selectivity, higher sensitivity and lower power consumption. The sensing layer in gas sensors have attracted dominant attention in the past research. In addition to the conventional metal oxide semiconductors, emerging nanocomposites and graphene-like two-dimensional materials also have drawn considerable research interest. This inspires us to organize this comprehensive 2020 gas sensing materials roadmap to discuss the current status, state-of-the-art progress, and present and future challenges in various materials that is potentially useful for gas sensors.

17.
Oxid Med Cell Longev ; 2021: 8684725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833854

RESUMO

Osteoarthritis (OA) is the most common degenerative joint disease with chronic joint pain caused by progressive degeneration of articular cartilage at synovial joints. Acteoside, a caffeoylphenylethanoid glycoside, has various biological activities such as antimicrobial, anti-inflammatory, anticancer, antioxidative, cytoprotective, and neuroprotective effect. Further, oral administration of acteoside at high dosage does not cause genotoxicity. Therefore, the aim of present study is to verify the anticatabolic effects of acteoside against osteoarthritis and its anticatabolic signaling pathway. Acteoside did not decrease the viabilities of mouse fibroblast L929 cells used as normal cells and primary rat chondrocytes. Acteoside counteracted the IL-1ß-induced proteoglycan loss in the chondrocytes and articular cartilage through suppressing the expression and activation of cartilage-degrading enzyme such as matrix metalloproteinase- (MMP-) 13, MMP-1, and MMP-3. Furthermore, acteoside suppressed the expression of inflammatory mediators such as inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2 in the primary rat chondrocytes treated with IL-1ß. Subsequently, the expression of proinflammatory cytokines was decreased by acteoside in the primary rat chondrocytes treated with IL-1ß. Moreover, acteoside suppressed not only the phosphorylation of mitogen-activated protein kinases in primary rat chondrocytes treated with IL-1ß but also the translocation of NFκB from the cytosol to the nucleus through suppression of its phosphorylation. Oral administration of 5 and 10 mg/kg acteoside attenuated the progressive degeneration of articular cartilage in the osteoarthritic mouse model generated by destabilization of the medial meniscus. Our findings indicate that acteoside is a promising potential anticatabolic agent or supplement to attenuate or prevent progressive degeneration of articular cartilage.


Assuntos
Anti-Inflamatórios/farmacologia , Glucosídeos/farmacologia , Imunossupressores/farmacologia , Interleucina-1beta/metabolismo , Osteoartrite/metabolismo , Fenóis/farmacologia , Transdução de Sinais , Animais , Anti-Inflamatórios/uso terapêutico , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Linhagem Celular , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Glucosídeos/uso terapêutico , Imunossupressores/uso terapêutico , Metaloproteinases da Matriz/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Osteoartrite/tratamento farmacológico , Fenóis/uso terapêutico , Ratos , Ratos Sprague-Dawley
18.
Nanoscale ; 13(9): 4728-4757, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33645596

RESUMO

The ongoing need to detect and monitor hazardous, volatile, and flammable gases has led to the use of gas sensors in several fields to improve safety and health issues. Conductometric type gas sensors, which have considerable advantages over other gas sensors, have thrived in numerous gas sensing fields. The ever-present key challenges and requirements of these sensors are to achieve excellent performance, including high sensitivity, good selectivity, low working temperature, and durability. Therefore, tremendous research effort has focused on improving these properties, and various state-of-the-art techniques have been reported. This review article discusses the recent advances and utilization of various irradiation techniques, including electron-beam, microwave, ion-beam, and gamma-ray irradiation, along with their investigation of the effects on the physicochemical properties of pre-synthesized nanomaterials, sensing performances, and related gas sensing mechanisms. A review of the progress on the effects of different irradiation techniques for boosting the sensing properties can contribute to the evolution of highly reliable sensors to assess the environment and health. For researchers, who work on gas sensors, this paper provides information on the current trends on the advances in the novel state-of-art of irradiated materials and their promising application in the sensitive detection of various toxic and VOCs.

19.
Sensors (Basel) ; 21(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672959

RESUMO

Reduced graphene oxide (rGO) is a reduced form of graphene oxide used extensively in gas sensing applications. On the other hand, in its pristine form, graphene has shortages and is generally utilized in combination with other metal oxides to improve gas sensing capabilities. There are different ways of adding rGO to different metal oxides with various morphologies. This study focuses on rGO-loaded metal oxide nanofiber (NF) synthesized using an electrospinning method. Different amounts of rGO were added to the metal oxide precursors, and after electrospinning, the gas response is enhanced through different sensing mechanisms. This review paper discusses rGO-loaded metal oxide NFs gas sensors.

20.
ACS Appl Mater Interfaces ; 13(12): 14447-14457, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33739099

RESUMO

It is an effective strategy to enhance the sensitivity of semiconductor metal oxides (SMOs) being sensitized with CsPbI3 nanocrystals (NCs) by adjusting the heterostructure between CsPbI3NC and SMO nanomaterials. In this work, for the first time, a porous 3D multiple-walled carbon nanotube (MWCNT) network uniformly coated with SnO2 quantum nanoparticles (QNPs) and CsPbI3 nanocrystals were prepared via a simple solvent vapor-induced self-assembly method. The fabricated CsPbI3NC-SnO2QNP/MWCNT nanocomposite with vapor-induced self-assembly exhibits superior stability against the moisture as well as an excellent sensing response. The results imply that the rational design of the metal halide perovskite NC/SMO heterostructure can not only improve the stability but also meet the requirements of sensing application. The self-assembled SnO2QNP/MWCNT can facilitate the dispersion of small-sized nanoparticles and efficaciously prevent the detachment of CsPbI3NC. Compared with pristine SnO2QNP and SnO2/MWCNT sensors, the CsPbI3NC-modified SnO2QNP/MWCNT nanostructure exhibited a remarkable sensitivity of 39.2 for 0.2 ppm NH3, rapid response/recovery time of 17/18 s, and excellent selectivity towards NH3. In particular, we applied machine learning methods, including principal component analysis (PCA) and support vector machines (SVMs), to analyze the sensing performance of the CsPbI3NC-SnO2QNP/MWCNT sensor and found that the combined effects of CsPbI3NC-SnO2QNP/MWCNT heterointerfaces contributed to the improvement of selectivity of sensors. The excellent NH3 for sub-ppm level concentration is ascribed to the high sensing activity of the CsPbI3 NC-based heterojunction. This work may not only enrich the family of high-performance breath detection materials but also provide a good example for designing reasonable composite materials with specific properties in the field of metal halide perovskite/SMO heterojunctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...