Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells ; 41(10): 958-970, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37539750

RESUMO

The reparative potential of cardiac Lin-KIT+ (KIT) cells is influenced by their population, but identifying their markers is challenging due to changes in phenotype during in vitro culture. Resolving this issue requires uncovering cell heterogeneity and discovering new subpopulations. Single-cell RNA sequencing (scRNA-seq) can identify KIT cell subpopulations, their markers, and signaling pathways. We used 10× genomic scRNA-seq to analyze cardiac-derived cells from adult mice and found 3 primary KIT cell populations: KIT1, characterized by high-KIT expression (KITHI), represents a population of cardiac endothelial cells; KIT2, which has low-KIT expression (KITLO), expresses transcription factors such as KLF4, MYC, and GATA6, as well as genes involved in the regulation of angiogenic cytokines; KIT3, with moderate KIT expression (KITMOD), expresses the cardiac transcription factor MEF2C and mesenchymal cell markers such as ENG. Cell-cell communication network analysis predicted the presence of the 3 KIT clusters as signal senders and receivers, including VEGF, CXCL, and BMP signaling. Metabolic analysis showed that KIT1 has the low activity of glycolysis and oxidative phosphorylation (OXPHOS), KIT2 has high glycolytic activity, and KIT3 has high OXPHOS and fatty acid degradation activity, indicating distinct metabolic adaptations of the 3 KIT populations. Through the systemic infusion of KIT1 cells in a mouse model of myocardial infarction, we observed their involvement in promoting the formation of new micro-vessels. In addition, in vitro spheroid culture experiments demonstrated the cardiac differentiation capacity of KIT2 cells.


Assuntos
Células Endoteliais , Análise da Expressão Gênica de Célula Única , Camundongos , Animais , Células Endoteliais/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica , Coração , Fatores de Transcrição/metabolismo
2.
Adv Exp Med Biol ; 1418: 119-126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603276

RESUMO

Skeletal muscle atrophy is a progressive chronic disease associated with various conditions, such as aging, cancer, and muscular dystrophy. Interleukin-6 (IL-6) is highly correlated with or plays a crucial role in inducing skeletal muscle atrophy. Extracellular vehicles (EVs), including exosomes, mediate cell-cell communication, and alterations in the genetic material contained in EVs during muscle atrophy may impair muscle cell signaling. Transplantation of muscle progenitor cell-derived EVs (MPC-EVs) is a promising approach for treating muscle diseases such as Duchenne muscular dystrophy (DMD). Moreover, stem cell-derived EVs with modification of microRNAs (e.g., miR-26 and miR-29) have been reported to attenuate muscle atrophy. Unbiased RNA-Seq analysis suggests that MPC-EVs may exert an inhibitory effect on IL-6 pathway. Here, we review the latest advances concerning the mechanisms of stem cell/progenitor cell-derived EVs in alleviating muscle atrophy, including anti-inflammatory and anti-fibrotic effects. We also discuss the clinical application of EVs in the treatment of muscle atrophy.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Humanos , Interleucina-6 , Atrofia Muscular/terapia
3.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37569835

RESUMO

The gene dystrophin is responsible for Duchenne muscular dystrophy (DMD), a grave X-linked recessive ailment that results in respiratory and cardiac failure. As the expression of dystrophin in muscle stem cells (MuSCs) is a topic of debate, there exists a limited understanding of its influence on the gene network of MuSCs. This study was conducted with the objective of investigating the effects of dystrophin on the regulatory network of genes in MuSCs. To comprehend the function of dystrophin in MuSCs from DMD, this investigation employed single-nuclei RNA sequencing (snRNA-seq) to appraise the transcriptomic profile of MuSCs obtained from the skeletal muscles of dystrophin mutant mice (DMDmut) and wild-type control mice. The study revealed that the dystrophin mutation caused the disruption of several long non-coding RNAs (lncRNAs), leading to the inhibition of MEG3 and NEAT1 and the upregulation of GM48099, GM19951, and GM15564. The Gene Ontology (GO) enrichment analysis of biological processes (BP) indicated that the dystrophin mutation activated the cell adhesion pathway in MuSCs, inhibited the circulatory system process, and affected the regulation of binding. The study also revealed that the metabolic pathway activity of MuSCs was altered. The metabolic activities of oxidative phosphorylation (OXPHOS) and glycolysis were elevated in MuSCs from DMDmut. In summary, this research offers novel insights into the disrupted gene regulatory program in MuSCs due to dystrophin mutation at the single-cell level.


Assuntos
Distrofia Muscular de Duchenne , Células Satélites de Músculo Esquelético , Camundongos , Animais , Distrofia Muscular de Duchenne/metabolismo , Distrofina/genética , Distrofina/metabolismo , Redes Reguladoras de Genes , Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Análise de Sequência de RNA , Modelos Animais de Doenças
4.
Cell Death Dis ; 14(7): 446, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468478

RESUMO

MicroRNA-150 (miR-150) is conserved between rodents and humans, is significantly downregulated during heart failure (HF), and correlates with patient outcomes. We previously reported that miR-150 is protective during myocardial infarction (MI) in part by decreasing cardiomyocyte (CM) apoptosis and that proapoptotic small proline-rich protein 1a (Sprr1a) is a direct CM target of miR-150. We also showed that Sprr1a knockdown in mice improves cardiac dysfunction and fibrosis post-MI and that Sprr1a is upregulated in pathological mouse cardiac fibroblasts (CFs) from ischemic myocardium. However, the direct functional relationship between miR-150 and SPRR1A during both post-MI remodeling in mice and human CF (HCF) activation was not established. Here, using a novel miR-150 knockout;Sprr1a-hypomorphic (Sprr1ahypo/hypo) mouse model, we demonstrate that Sprr1a knockdown blunts adverse post-MI effects caused by miR-150 loss. Moreover, HCF studies reveal that SPRR1A is upregulated in hypoxia/reoxygenation-treated HCFs and is downregulated in HCFs exposed to the cardioprotective ß-blocker carvedilol, which is inversely associated with miR-150 expression. Significantly, we show that the protective roles of miR-150 in HCFs are directly mediated by functional repression of profibrotic SPRR1A. These findings delineate a pivotal functional interaction between miR-150 and SPRR1A as a novel regulatory mechanism pertinent to CF activation and ischemic HF.


Assuntos
MicroRNAs , Infarto do Miocárdio , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibrose , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Remodelação Ventricular/genética
6.
Cardiol Plus ; 8(1): 18-26, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187809

RESUMO

The metabolic status of surviving cardiomyocytes (CM) in the myocardial tissues of patients who sustained myocardial infarction (MI) is largely unknown. Spatial single-cell RNA-sequencing (scRNA-seq) is a novel tool that enables the unbiased analysis of RNA signatures within intact tissues. We employed this tool to assess the metabolic profiles of surviving CM in the myocardial tissues of patients post-MI. Methods: A spatial scRNA-seq dataset was used to compare the genetic profiles of CM from patients with MI and control patients; we analyzed the metabolic adaptations of surviving CM within the ischemic niche. A standard pipeline in Seurat was used for data analysis, including normalization, feature selection, and identification of highly variable genes using principal component analysis (PCA). Harmony was used to remove batch effects and integrate the CM samples based on annotations. Uniform manifold approximation and projection (UMAP) was used for dimensional reduction. The Seurat "FindMarkers" function was used to identify differentially expressed genes (DEGs), which were analyzed by the Gene Ontology (GO) enrichment pathway. Finally, the scMetabolism R tool pipeline with parameters method = VISION (Vision is a flexible system that utilizes a high-throughput pipeline and an interactive web-based report to annotate and explore scRNA-seq datasets in a dynamic manner) and metabolism.type = Kyoto Encyclopedia of Genes and Genomes (KEGG) was used to quantify the metabolic activity of each CM. Results: Analysis of spatial scRNA-seq data showed fewer surviving CM in infarcted hearts than in control hearts. GO analysis revealed repressed pathways in oxidative phosphorylation, cardiac cell development, and activated pathways in response to stimuli and macromolecular metabolic processes. Metabolic analysis showed downregulated energy and amino acid pathways and increased purine, pyrimidine, and one-carbon pool by folate pathways in surviving CM. Conclusions: Surviving CM within the infarcted myocardium exhibited metabolic adaptations, as evidenced by the downregulation of most pathways linked to oxidative phosphorylation, glucose, fatty acid, and amino acid metabolism. In contrast, pathways linked to purine and pyrimidine metabolism, fatty acid biosynthesis, and one-carbon metabolism were upregulated in surviving CM. These novel findings have implications for the development of effective strategies to improve the survival of hibernating CM within the infarcted heart.

7.
J Cardiovasc Dev Dis ; 10(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37103045

RESUMO

Noncoding RNAs (ncRNAs) play fundamental roles in cardiac development and cardiovascular diseases (CVDs), which are a major cause of morbidity and mortality. With advances in RNA sequencing technology, the focus of recent research has transitioned from studies of specific candidates to whole transcriptome analyses. Thanks to these types of studies, new ncRNAs have been identified for their implication in cardiac development and CVDs. In this review, we briefly describe the classification of ncRNAs into microRNAs, long ncRNAs, and circular RNAs. We then discuss their critical roles in cardiac development and CVDs by citing the most up-to-date research articles. More specifically, we summarize the roles of ncRNAs in the formation of the heart tube and cardiac morphogenesis, cardiac mesoderm specification, and embryonic cardiomyocytes and cardiac progenitor cells. We also highlight ncRNAs that have recently emerged as key regulators in CVDs by focusing on six of them. We believe that this review concisely addresses perhaps not all but certainly the major aspects of current progress in ncRNA research in cardiac development and CVDs. Thus, this review would be beneficial for readers to obtain a recent picture of key ncRNAs and their mechanisms of action in cardiac development and CVDs.

8.
Biology (Basel) ; 12(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36979114

RESUMO

INTRODUCTION: Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disorder caused by mutations in the dystrophin gene, which leads to heart and respiratory failure. Despite the critical impact of DMD on endothelial cells (ECs), there is limited understanding of its effect on the endothelial gene network. The aim of this study was to investigate the impact of DMD on the gene regulatory network of ECs. METHODS AND RESULTS: To gain insights into the role of the dystrophin muscular dystrophy gene (DMD) in ECs from Duchenne muscular dystrophy; the study utilized single-nuclei RNA sequencing (snRNA-seq) to evaluate the transcriptomic profile of ECs from skeletal muscles in DMD mutant mice (DMDmut) and wild-type control mice. The analysis showed that the DMD mutation resulted in the suppression of several genes, including SPTBN1 and the upregulation of multiple long noncoding RNAs (lncRNAs). GM48099, GM19951, and GM15564 were consistently upregulated in ECs and skeletal muscle cells from DMDmut, indicating that these dysregulated lncRNAs are conserved across different cell types. Gene ontology (GO) enrichment analysis revealed that the DMD mutation activated the following four pathways in ECs: fibrillary collagen trimer, banded collagen fibril, complex of collagen trimers, and purine nucleotide metabolism. The study also found that the metabolic pathway activity of ECs was altered. Oxidative phosphorylation (OXPHOS), fatty acid degradation, glycolysis, and pyruvate metabolism were decreased while purine metabolism, pyrimidine metabolism, and one carbon pool by folate were increased. Moreover, the study investigated the impact of the DMD mutation on ECs from skeletal muscles and found a significant decrease in their overall number, but no change in their proliferation. CONCLUSIONS: Overall, this study provides new insights into the gene regulatory program in ECs in DMD and highlights the importance of further research in this area.

9.
Cells ; 12(6)2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36980214

RESUMO

Clinical trials have shown that electric stimulation (ELSM) using either cardiac resynchronization therapy (CRT) or cardiac contractility modulation (CCM) approaches is an effective treatment for patients with moderate to severe heart failure, but the mechanisms are incompletely understood. Extracellular vesicles (EV) produced by cardiac mesenchymal stem cells (C-MSC) have been reported to be cardioprotective through cell-to-cell communication. In this study, we investigated the effects of ELSM stimulation on EV secretion from C-MSCs (C-MSCELSM). We observed enhanced EV-dependent cardioprotection conferred by conditioned medium (CM) from C-MSCELSM compared to that from non-stimulated control C-MSC (C-MSCCtrl). To investigate the mechanisms of ELSM-stimulated EV secretion, we examined the protein levels of neutral sphingomyelinase 2 (nSMase2), a key enzyme of the endosomal sorting complex required for EV biosynthesis. We detected a time-dependent increase in nSMase2 protein levels in C-MSCELSM compared to C-MSCCtrl. Knockdown of nSMase2 in C-MSC by siRNA significantly reduced EV secretion in C-MSCELSM and attenuated the cardioprotective effect of CM from C-MSCELSM in HL-1 cells. Taken together, our results suggest that ELSM-mediated increases in EV secretion from C-MSC enhance the cardioprotective effects of C-MSC through an EV-dependent mechanism involving nSMase2.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Vesículas Extracelulares/metabolismo , Coração , Células-Tronco Mesenquimais/metabolismo
10.
Cells ; 12(6)2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36980233

RESUMO

Duchenne muscular dystrophy is an X-linked recessive disease caused by mutations in dystrophin proteins that lead to heart failure and respiratory failure. Dystrophin (DMD) is not only expressed in cardiomyocytes and skeletal muscle cells, but also in vascular smooth muscle cells (VSMCs). Patients with DMD have been reported to have hypotension. Single nuclear RNA sequencing (snRNA-seq) is a state-of-the-art technology capable of identifying niche-specific gene programs of tissue-specific cell subpopulations. To determine whether DMD mutation alters blood pressure, we compared systolic, diastolic, and mean blood pressure levels in mdx mice (a mouse model of DMD carrying a nonsense mutation in DMD gene) and the wide-type control mice. We found that mdx mice showed significantly lower systolic, diastolic, and mean blood pressure than control mice. To understand how DMD mutation changes gene expression profiles from VSMCs, we analyzed an snRNA-seq dataset from the muscle nucleus of DMD mutant (DMDmut) mice and control (Ctrl) mice. Gene Ontology (GO) enrichment analysis revealed that the most significantly activated pathways in DMDmut-VSMCs are involved in ion channel function (potassium channel activity, cation channel complex, and cation channel activity). Notably, we discovered that the DMDmut-VSMCs showed significantly upregulated expression of KCNQ5 and RYR2, whereas the most suppressed pathways were transmembrane transporter activity (such as anion transmembrane transporter activity, inorganic anion transmembrane transporter activity, import into cell, and import across plasma membrane). Moreover, we analyzed metabolic pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) using "scMetabolism" R package. DMDmut-VSMCs exhibited dysregulation of pyruvate metabolism and nuclear acid metabolism. In conclusion, via the application of snRNA-seq, we (for the first time) identify the potential molecular regulation by DMD in the upregulation of the expression of KCNQ5 genes in VSMCs, which helps us to understand the mechanism of hypotension in DMD patients. Our study potentially offers new possibilities for therapeutic interventions in systemic hypotension in DMD patients with pharmacological inhibition of KCNQ5.


Assuntos
Distrofina , Músculo Liso Vascular , Distrofia Muscular de Duchenne , Animais , Camundongos , Ânions , Cátions , Distrofina/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos Endogâmicos mdx , RNA Nuclear Pequeno , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia
11.
Methods Mol Biol ; 2587: 455-464, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36401043

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive myopathy caused by mutations in genes encoding dystrophin proteins that ultimately lead to depletion of myogenic progenitor cells (MPCs). Several approaches have been used to correctly express the dystrophin gene in induced pluripotent stem cells (iPSCs), including deletion of mutated exon 23 (ΔEx23) by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated gene 9 (Cas9)-mediated gene editing technology. However, this approach is labor-intensive due to individual colony picking and genotyping to verify allelic modification. Here, we present a protocol to restore the function of the dystrophin gene by using homology-directed repair (HDR)-based CRISPR/Cas9 and inducing myogenic program of reprogrammed iPSCs from Mdx mice by inducible muscle-specific transcription factor MyoD.


Assuntos
Sistemas CRISPR-Cas , Distrofina , Camundongos , Animais , Distrofina/genética , Distrofina/metabolismo , Sistemas CRISPR-Cas/genética , Camundongos Endogâmicos mdx , Mioblastos/metabolismo , Músculos/metabolismo , Tecnologia
12.
Cell Death Discov ; 8(1): 504, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585403

RESUMO

The ß1-adrenergic receptor (ß1AR) is found primarily in hearts (mainly in cardiomyocytes [CMs]) and ß-arrestin-mediated ß1AR signaling elicits cardioprotection through CM survival. We showed that microRNA-150 (miR-150) is upregulated by ß-arrestin-mediated ß1AR signaling and that CM miR-150 inhibits maladaptive remodeling post-myocardial infarction. Here, we investigate whether miR-150 rescues cardiac dysfunction in mice bearing CM-specific abrogation of ß-arrestin-mediated ß1AR signaling. Using CM-specific transgenic (TG) mice expressing a mutant ß1AR (G protein-coupled receptor kinase [GRK]-ß1AR that exhibits impairment in ß-arrestin-mediated ß1AR signaling), we first generate a novel double TG mouse line overexpressing miR-150. We demonstrate that miR-150 is sufficient to improve cardiac dysfunction in CM-specific GRK-ß1AR TG mice following chronic catecholamine stimulation. Our genome-wide circular RNA, long noncoding RNA (lncRNA), and mRNA profiling analyses unveil a subset of cardiac ncRNAs and genes as heretofore unrecognized mechanisms for beneficial actions of ß1AR/ß-arrestin signaling or miR-150. We further show that lncRNA Gm41664 and GDAP1L1 are direct novel upstream and downstream regulators of miR-150. Lastly, CM protective actions of miR-150 are attributed to repressing pro-apoptotic GDAP1L1 and are mitigated by pro-apoptotic Gm41664. Our findings support the idea that miR-150 contributes significantly to ß1AR/ß-arrestin-mediated cardioprotection by regulating unique ncRNA and gene signatures in CMs.

13.
Circ Heart Fail ; 15(4): e008686, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35000421

RESUMO

BACKGROUND: MicroRNA-150 (miR-150) plays a protective role in heart failure (HF). Long noncoding RNA, myocardial infarction-associated transcript (MIAT) regulates miR-150 function in vitro by direct interaction. Concurrent with miR-150 downregulation, MIAT is upregulated in failing hearts, and gain-of-function single-nucleotide polymorphisms in MIAT are associated with increased risk of myocardial infarction (MI) in humans. Despite the correlative relationship between MIAT and miR-150 in HF, their in vivo functional relationship has never been established, and molecular mechanisms by which these 2 noncoding RNAs regulate cardiac protection remain elusive. METHODS: We use MIAT KO (knockout), Hoxa4 (homeobox a4) KO, MIAT TG (transgenic), and miR-150 TG mice. We also develop DTG (double TG) mice overexpressing MIAT and miR-150. We then use a mouse model of MI followed by cardiac functional, structural, and mechanistic studies by echocardiography, immunohistochemistry, transcriptome profiling, Western blotting, and quantitative real-time reverse transcription-polymerase chain reaction. Moreover, we perform expression analyses in hearts from patients with HF. Lastly, we investigate cardiac fibroblast activation using primary adult human cardiac fibroblasts and in vitro assays to define the conserved MIAT/miR-150/HOXA4 axis. RESULTS: Using novel mouse models, we demonstrate that genetic overexpression of MIAT worsens cardiac remodeling, while genetic deletion of MIAT protects hearts against MI. Importantly, miR-150 overexpression attenuates the detrimental post-MI effects caused by MIAT. Genome-wide transcriptomic analysis of MIAT null mouse hearts identifies Hoxa4 as a novel downstream target of the MIAT/miR-150 axis. Hoxa4 is upregulated in cardiac fibroblasts isolated from ischemic myocardium and subjected to hypoxia/reoxygenation. HOXA4 is also upregulated in patients with HF. Moreover, Hoxa4 deficiency in mice protects the heart from MI. Lastly, protective actions of cardiac fibroblast miR-150 are partially attributed to the direct and functional repression of profibrotic Hoxa4. CONCLUSIONS: Our findings delineate a pivotal functional interaction among MIAT, miR-150, and Hoxa4 as a novel regulatory mechanism pertinent to ischemic HF.


Assuntos
Insuficiência Cardíaca , Proteínas de Homeodomínio , MicroRNAs , Infarto do Miocárdio , RNA Longo não Codificante , Fatores de Transcrição , Animais , Modelos Animais de Doenças , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Remodelação Ventricular
14.
Methods Cell Biol ; 166: 309-348, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34752338

RESUMO

Cardiovascular diseases (CVDs) represent the foremost cause of mortality in the United States and worldwide. It is estimated that CVDs account for approximately 17.8 million deaths each year. Despite the advances made in understanding cellular mechanisms and gene mutations governing the pathophysiology of CVDs, they remain a significant cause of mortality and morbidity. A major segment of mammalian genomes encodes for genes that are not further translated into proteins. The roles of the majority of such noncoding ribonucleic acids (RNAs) have been puzzling for a long time. However, it is becoming increasingly clear that noncoding RNAs (ncRNAs) are dynamically expressed in different cell types and have a comprehensive selection of regulatory roles at almost every step involved in DNAs, RNAs and proteins. Indeed, ncRNAs regulate gene expression through epigenetic interactions, through direct binding to target sequences, or by acting as competing endogenous RNAs. The profusion of ncRNAs in the cardiovascular system suggests that they may modulate complex regulatory networks that govern cardiac physiology and pathology. In this review, we summarize various functions of ncRNAs and highlight the recent literature on interactions between ncRNAs with an emphasis on cardiovascular disease regulation. Furthermore, as the broad-spectrum of ncRNAs potentially establishes new avenues for therapeutic development targeting CVDs, we discuss the innovative prospects of ncRNAs as therapeutic targets for CVDs.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Animais , Doenças Cardiovasculares/genética , Epigênese Genética/genética , Mamíferos/genética , MicroRNAs/genética , RNA , RNA não Traduzido/genética
15.
Front Pharmacol ; 12: 654316, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34413770

RESUMO

Elderly patients are more susceptible to ischemic injury. N6-methyladenosine (m6A) modification is the most abundant reversible epitranscriptomic modification in mammalian RNA and plays a vital role in many biological processes. However, it is unclear whether age difference impacts m6A RNA methylation in hearts and their response to acute myocardial ischemia/reperfusion (I/R) injury. In this study, we measured the global level of m6A RNA methylation as well as the expression of m6A RNA "writers" (methylation enzymes) and "erasers" (demethylation enzymes) in the hearts of young and elderly female mice undergone sham surgery or acute MI/R injury. We found that m6A RNA level and associate modifier gene expression was similar in intact young and old female hearts. However, young hearts show a significant reduction in m6A RNA while elderly hearts showed only a slight reduction in m6A RNA in response to acute I/R injury. To explore the mechanism of differential level of m6A RNA modification, we use qRT-PCR and Western blotting to compare the mRNA and protein expression of major m6A-related "writers" (Mettl3, Mettl14, and WTAP) and 'erasers" (ALKBH5 and FTO). Mettl3 mRNA and protein expression were significantly reduced in both young and elderly hearts. However, the levels of FTO's mRNA and protein were only significantly reduced in ischemic elderly hearts, and age-related downregulation of FTO may offset the effect of reduced Mettl3 on reduced m6A RNA level in the hearts of aging mice hearts with acute I/R injury, indicating aging-related differences in epitranscriptomic m6A regulation in hearts in response to acute I/R injury. To further investigate specific I/R related targets of Mettl3, we overexpressed Mettl3 in cardiomyocyte line (HL1) using lentiviral vector, and the m6A enrichment of Bcl2, Bax and PTEN were quantified with m6A RIP-qPCR, we found that m6A modification of PTEN mRNA decreased after in vitro hypoxia/reperfusion injury (iH/R) while Mettl3 augments m6A levels of both Bax and PTEN after iH/R, indicating that Bax and PTEN are target genes of Mettl3 under iH/R stress.

16.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34403363

RESUMO

MicroRNA-150 (miR-150) is downregulated in patients with multiple cardiovascular diseases and in diverse mouse models of heart failure (HF). miR-150 is significantly associated with HF severity and outcome in humans. We previously reported that miR-150 is activated by ß-blocker carvedilol (Carv) and plays a protective role in the heart using a systemic miR-150 KO mouse model. However, mechanisms that regulate cell-specific miR-150 expression and function in HF are unknown. Here, we demonstrate that potentially novel conditional cardiomyocyte-specific (CM-specific) miR-150 KO (miR-150 cKO) in mice worsens maladaptive cardiac remodeling after myocardial infarction (MI). Genome-wide transcriptomic analysis in miR-150 cKO mouse hearts identifies small proline-rich protein 1a (Sprr1a) as a potentially novel target of miR-150. Our studies further reveal that Sprr1a expression is upregulated in CMs isolated from ischemic myocardium and subjected to simulated ischemia/reperfusion, while its expression is downregulated in hearts and CMs by Carv. We also show that left ventricular SPRR1A is upregulated in patients with HF and that Sprr1a knockdown in mice prevents maladaptive post-MI remodeling. Lastly, protective roles of CM miR-150 are, in part, attributed to the direct and functional repression of proapoptotic Sprr1a. Our findings suggest a crucial role for the miR-150/SPRR1A axis in regulating CM function post-MI.


Assuntos
Proteínas Ricas em Prolina do Estrato Córneo/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Remodelação Ventricular/genética , Antagonistas Adrenérgicos beta/farmacologia , Animais , Apoptose/fisiologia , Carvedilol/farmacologia , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Regulação para Baixo , Feminino , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Regulação para Cima
17.
Front Endocrinol (Lausanne) ; 12: 642857, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054724

RESUMO

Diabetes causes hyperglycemia, which can create a stressful environment for cardiac microvascular endothelial cells (CMECs). To investigate the impact of diabetes on the cellular metabolism of CMECs, we assessed glycolysis by quantifying the extracellular acidification rate (ECAR), and mitochondrial oxidative phosphorylation (OXPHOS) by measuring cellular oxygen consumption rate (OCR), in isolated CMECs from wild-type (WT) hearts and diabetic hearts (db/db) using an extracellular flux analyzer. Diabetic CMECs exhibited a higher level of intracellular reactive oxygen species (ROS), and significantly reduced glycolytic reserve and non-glycolytic acidification, as compared to WT CMECs. In addition, OCR assay showed that diabetic CMECs had increased maximal respiration, and significantly reduced non-mitochondrial oxygen consumption and proton leak. Quantitative PCR (qPCR) showed no difference in copy number of mitochondrial DNA (mtDNA) between diabetic and WT CMECs. In addition, gene expression profiling analysis showed an overall decrease in the expression of essential genes related to ß-oxidation (Sirt1, Acox1, Acox3, Hadha, and Hadhb), tricarboxylic acid cycle (TCA) (Idh-3a and Ogdh), and electron transport chain (ETC) (Sdhd and Uqcrq) in diabetic CMECs compared to WT CMECs. Western blot confirmed that the protein expression of Hadha, Acox1, and Uqcrq was decreased in diabetic CMECs. Although lectin staining demonstrated no significant difference in capillary density between the hearts of WT mice and db/db mice, diabetic CMECs showed a lower percentage of cell proliferation by Ki67 staining, and a higher percentage of cellular apoptosis by TUNEL staining, compared with WT CMECs. In conclusion, excessive ROS caused by hyperglycemia is associated with impaired glycolysis and mitochondrial function in diabetic CMECs, which in turn may reduce proliferation and promote CMEC apoptosis.


Assuntos
Complicações do Diabetes , Células Endoteliais/citologia , Endotélio Vascular/metabolismo , Metabolismo Energético , Microcirculação , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Glicemia/análise , Peso Corporal , Proliferação de Células , DNA Mitocondrial/metabolismo , Diabetes Mellitus , Ácidos Graxos/metabolismo , Glicólise , Hiperglicemia , Antígeno Ki-67/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Oxigênio/metabolismo , Consumo de Oxigênio , Reação em Cadeia da Polimerase , Espécies Reativas de Oxigênio , Aumento de Peso
18.
Development ; 148(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34027990

RESUMO

Polycomb repressive complex 2 (PRC2) deposits H3K27me3 on chromatin to silence transcription. PRC2 broadly interacts with RNAs. Currently, the role of the RNA-PRC2 interaction in human cardiogenesis remains elusive. Here, we found that human-specific heart brake lncRNA 1 (HBL1) interacted with two PRC2 subunits, JARID2 and EED, in human pluripotent stem cells (hPSCs). Loss of JARID2, EED or HBL1 significantly enhanced cardiac differentiation from hPSCs. HBL1 depletion disrupted genome-wide PRC2 occupancy and H3K27me3 chromatin modification on essential cardiogenic genes, and broadly enhanced cardiogenic gene transcription in undifferentiated hPSCs and later-on differentiation. In addition, ChIP-seq revealed reduced EED occupancy on 62 overlapped cardiogenic genes in HBL1-/- and JARID2-/- hPSCs, indicating that the epigenetic state of cardiogenic genes was determined by HBL1 and JARID2 at pluripotency stage. Furthermore, after cardiac development occurs, the cytosolic and nuclear fractions of HBL1 could crosstalk via a conserved 'microRNA-1-JARID2' axis to modulate cardiogenic gene transcription. Overall, our findings delineate the indispensable role of HBL1 in guiding PRC2 function during early human cardiogenesis, and expand the mechanistic scope of lncRNA(s) that cytosolic and nuclear portions of HBL1 could coordinate to orchestrate human cardiogenesis.


Assuntos
Genoma , Organogênese , Células-Tronco Pluripotentes/metabolismo , Complexo Repressor Polycomb 2/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular , Cromatina , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/crescimento & desenvolvimento , Histonas/genética , Humanos , MicroRNAs
19.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703292

RESUMO

Cardiac mesenchymal stem cells (C-MSC) play a key role in maintaining normal cardiac function under physiological and pathological conditions. Glycolysis and mitochondrial oxidative phosphorylation predominately account for energy production in C-MSC. Dicer, a ribonuclease III endoribonuclease, plays a critical role in the control of microRNA maturation in C-MSC, but its role in regulating C-MSC energy metabolism is largely unknown. In this study, we found that Dicer knockout led to concurrent increase in both cell proliferation and apoptosis in C-MSC compared to Dicer floxed C-MSC. We analyzed mitochondrial oxidative phosphorylation by quantifying cellular oxygen consumption rate (OCR), and glycolysis by quantifying the extracellular acidification rate (ECAR), in C-MSC with/without Dicer gene deletion. Dicer gene deletion significantly reduced mitochondrial oxidative phosphorylation while increasing glycolysis in C-MSC. Additionally, Dicer gene deletion selectively reduced the expression of ß-oxidation genes without affecting the expression of genes involved in the tricarboxylic acid (TCA) cycle or electron transport chain (ETC). Finally, Dicer gene deletion reduced the copy number of mitochondrially encoded 1,4-Dihydronicotinamide adenine dinucleotide (NADH): ubiquinone oxidoreductase core subunit 6 (MT-ND6), a mitochondrial-encoded gene, in C-MSC. In conclusion, Dicer gene deletion induced a metabolic shift from oxidative metabolism to aerobic glycolysis in C-MSC, suggesting that Dicer functions as a metabolic switch in C-MSC, which in turn may regulate proliferation and environmental adaptation.


Assuntos
RNA Helicases DEAD-box/metabolismo , Ácidos Graxos/metabolismo , Células-Tronco Mesenquimais/enzimologia , Mitocôndrias Cardíacas/metabolismo , Miocárdio/enzimologia , Ribonuclease III/metabolismo , Animais , Ciclo do Ácido Cítrico , RNA Helicases DEAD-box/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Ácidos Graxos/genética , Deleção de Genes , Glicólise , Humanos , Camundongos , Mitocôndrias Cardíacas/genética , Oxirredução , RNA de Transferência de Treonina , Ribonuclease III/genética
20.
J Mol Cell Cardiol ; 133: 67-74, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31150734

RESUMO

Myocardial ischemia/reperfusion (MI/R) causes loss of cardiomyocytes via oxidative stress-induced cardiomyocyte apoptosis. miR322, orthologous to human miR-424, was identified as an ischemia-induced angiogenic miRNA, but its cellular source and function in the setting of acute MI/R remains largely unknown. Using LacZ-tagged miR322 cluster reporter mice, we observed that vascular endothelial cells are the major cellular source of the miR322 cluster in adult hearts. Moreover, miR322 levels were significantly reduced in the heart at 24 h after MI/R injury. Intramyocardial injection of mimic-miR322 significantly diminished cardiac apoptosis (as determined by expression levels of active caspase 3 by Western blot analysis and immunostaining for TUNEL) and reduced infarct size by about 40%, in association with reduced FBXW7 and increased active Notch 1 levels in the ischemic hearts. FBXW7, which is an ubiquitin ligase that is crucial for activated Notch1 turnover, was identified as a direct target of miR322 via FBXW7 3'UTR reporter assay. Co-injection of FBXW7 plasmid with mimic-miR322 in ischemic hearts abolished the effect of mimic-miR322 to reduce apoptosis and infarct size in MI/R hearts. These data identify FBXW7 as a direct target of miR322 and suggest that miR322 could have potential therapeutic application for cardioprotection against ischemia/reperfusion-induced injury.


Assuntos
Proteína 7 com Repetições F-Box-WD/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Modelos Animais de Doenças , Proteína 7 com Repetições F-Box-WD/genética , Imunofluorescência , Camundongos , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...