Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Med Chem ; 30(18): 2075-2112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36017851

RESUMO

BACKGROUND: Matrix metalloproteinases (MMPs), also known as metalloproteinases, are enzymes that degrade proteins and require the presence of active metal atoms. There are more than 20 types of MMPs, and they promote cell migration through the proteolytic degradation of the extracellular basement. MMPs are upregulated in cancers and inflamed regions. MMPs have three conservation regions: pro-MMP, catalysis, and hemopexin. Through these domains, MMPs cleave matrixes and cell-cell barriers. Consequently, MMPs cleave the whole extracellular matrix (ECM). In other words, they decompose most of the components related to the ECM, in their roles as key enzymes in cellular and pathophysiological events in the body. INTRODUCTION: Zn2+-containing endo-type peptidases directly degrade and remodel the ECM region in the progression of various diseases. MMPs are frequently found in abnormal disease status of inflammatory responses, periodontal lesion, inflammatory pulmonary lesion, arteriosclerotic smooth muscles, arthritis, and tumor metastasis and invasion. They are also known to participate in aging processes-such as wrinkle formation-by destroying collagen in the dermis. In particular, the onset of diseases via the MMP-dependent inflammatory response is caused by the breakdown of proteins in the ECM and the basement membranous region, which are the supporting structures of cells. METHODS: This review describes the developments in the research examining the general and selective inhibitors for MMP associated with various human diseases over the past 20 years in terms of structure remodeling, substrate-recognizing specificities, and pharmacological applicability. RESULTS: Among two similar types of MMPs, MMP-2 is known as gelatinase-A with a 72 kDa, while MMP-9 is termed gelatinase-B with a 92 kDa. Both of these play a key role in this action. Therefore, both enzymatic expression levels coincide during the onset and progression of diseases. Endogenous tissue inhibitors of matrix metalloproteinases (TIMPs) are highly specific for each MMP inhibitor type. The intrinsic factors regulate various MMP types by inhibiting the onset of various diseases mediated by MMP-dependent or independent inflammatory responses. The MMP- 9 and MMP-2 enzyme activity related to the prognosis of diseases associated with the inflammatory response are selectively inhibited by TIMP1 and TIMP2, respectively. The major pathogenesis of MMP-mediated diseases is related to the proliferation of inflammatory cells in various human tissues, which indicates their potential to diagnose or treat these diseases. The discovery of a substance that inhibits MMPs would be very important for preventing and treating various MMP-dependent diseases. CONCLUSION: Considerable research has examined MMP inhibitors, but most of these have been synthetic compounds. Research using natural products as MMP inhibitors has only recently become a subject of interest. This review intends to discuss recent research trends regarding the physiological properties, functions, and therapeutic agents related to MMPs.


Assuntos
Inibidores de Metaloproteinases de Matriz , Neoplasias , Humanos , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Metaloproteinase 2 da Matriz/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Matriz Extracelular/metabolismo , Gelatinases/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo
2.
Antioxidants (Basel) ; 11(6)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35739975

RESUMO

Abiotic stress induces reactive oxygen species (ROS) generation in plants, and high ROS levels can cause partial or severe oxidative damage to cellular components that regulate the redox status. Here, we developed salt-tolerant transgenic rice plants that overexpressed the dehydroascorbate reductase gene (OsDHAR1) under the control of a stress-inducible sweet potato promoter (SWPA2). OsDHAR1-expressing transgenic plants exhibited improved environmental adaptability compared to wild-type plants, owing to enhanced ascorbate levels, redox homeostasis, photosynthetic ability, and membrane stability through cross-activation of ascorbate-glutathione cycle enzymes under paddy-field conditions, which enhanced various agronomic traits, including root development, panicle number, spikelet number per panicle, and total grain yield. dhar2-knockdown plants were susceptible to salt stress, and owing to poor seed maturation, exhibited reduced biomass (root growth) and grain yield under paddy field conditions. Microarray revealed that transgenic plants highly expressed genes associated with cell growth, plant growth, leaf senescence, root development, ROS and heavy metal detoxification systems, lipid metabolism, isoflavone and ascorbate recycling, and photosynthesis. We identified the genetic source of functional genomics-based molecular breeding in crop plants and provided new insights into the physiological processes underlying environmental adaptability, which will enable improvement of stress tolerance and crop species productivity in response to climate change.

3.
Molecules ; 27(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35566285

RESUMO

The stress-responsive, SK5 subclass, dehydrin gene, CaDHN, has been identified from the Arctic mouse-ear chickweed Cerastium arcticum. CaDHN contains an unusual single cysteine residue (Cys143), which can form intermolecular disulfide bonds. Mutational analysis and a redox experiment confirmed that the dimerization of CaDHN was the result of an intermolecular disulfide bond between the cysteine residues. The biochemical and physiological functions of the mutant C143A were also investigated by in vitro and in vivo assays using yeast cells, where it enhanced the scavenging of reactive oxygen species (ROS) by neutralizing hydrogen peroxide. Our results show that the cysteine residue in CaDHN helps to enhance C. arcticum tolerance to abiotic stress by regulating the dimerization of the intrinsically disordered CaDHN protein, which acts as a defense mechanism against extreme polar environments.


Assuntos
Caryophyllaceae , Cisteína , Cisteína/química , Dissulfetos/química , Peróxido de Hidrogênio , Oxirredução
4.
Food Sci Biotechnol ; 31(5): 515-526, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35529690

RESUMO

Soybeans have traditionally been a staple part of the human diet being highly rich in protein and lipid content. In an addition to the high nutritional components, soybeans have several functional components, like isoflavones, saponins, lecithin, and oligosaccharides. Soybeans emerge as a healthy functional food option. Isoflavones are most notable functional component of soybeans, exhibiting antioxidant activity while preventing plant-related diseases (e.g., antimicrobial and antiherbivore activities) and having positive effects on the life quality of plants. Isoflavones are thus sometimes referred to as phytochemicals. The latest research trends evince substantial interest in the biological efficacy of isoflavones in the human body as well as in plants and their related mechanisms. However, there is little information on the relationship between isoflavones and plants than beneficial human effects. This review discusses what is known about the physiological communication (transport and secretion) between isoflavones and plants, especially in soybeans.

5.
Antioxidants (Basel) ; 10(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34573086

RESUMO

Oats (Avena sativa L.) are rich in protein, fiber, calcium, vitamins (B, C, E, and K), amino acids, and antioxidants (beta-carotene, polyphenols, chlorophyll, and flavonoids). ß-glucan and avenanthramides improve the immune system, eliminate harmful substances from the body, reduce blood cholesterol, and help with dietary weight loss by enhancing the lipid profile and breaking down fat in the body. ß-glucan regulates insulin secretion, preventing diabetes. Progladins also lower cholesterol levels, suppress the accumulation of triglycerides, reduce blood sugar levels, suppress inflammation, and improve skin health. Saponin-based avanacosidase and functional substances of flavone glycoside improve the immune function, control inflammation, and prevent infiltration in the skin. Moreover, lignin and phytoestrogen prevent hormone-related cancer and improve the quality of life of postmenopausal women. Sprouted oats are rich in saponarin in detoxifying the liver. The literatures have been reviewed and the recent concepts and prospects have been summarized with figures and tables. This review discusses recent trends in research on the functionality of oats rather than their nutritional value with individual immunity for self-medication. The oat and its acting components have been revisited for the future prospect and development of human healthy and functional sources.

6.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445273

RESUMO

Peptides present in foods are involved in nutritional functions by supplying amino acids; sensory functions related to taste or solubility, emulsification, etc.; and bioregulatory functions in various physiological activities. In particular, peptides have a wide range of physiological functions, including as anticancer agents and in lowering blood pressure and serum cholesterol levels, enhancing immunity, and promoting calcium absorption. Soy protein can be partially hydrolyzed enzymatically to physiologically active soy (or soybean) peptides (SPs), which not only exert physiological functions but also help amino acid absorption in the body and reduce bitterness by hydrolyzing hydrophobic amino acids from the C- or N-terminus of soy proteins. They also possess significant gel-forming, emulsifying, and foaming abilities. SPs are expected to be able to prevent and treat atherosclerosis by inhibiting the reabsorption of bile acids in the digestive system, thereby reducing blood cholesterol, low-density lipoprotein, and fat levels. In addition, soy contains blood pressure-lowering peptides that inhibit angiotensin-I converting enzyme activity and antithrombotic peptides that inhibit platelet aggregation, as well as anticancer, antioxidative, antimicrobial, immunoregulatory, opiate-like, hypocholesterolemic, and antihypertensive activities. In animal models, neuroprotective and cognitive capacity as well as cardiovascular activity have been reported. SPs also inhibit chronic kidney disease and tumor cell growth by regulating the expression of genes associated with apoptosis, inflammation, cell cycle arrest, invasion, and metastasis. Recently, various functions of soybeans, including their physiologically active functions, have been applied to health-oriented foods, functional foods, pharmaceuticals, and cosmetics. This review introduces some current results on the role of bioactive peptides found in soybeans related to health functions.


Assuntos
Glycine max/química , Peptídeos , Proteínas de Soja , Animais , Humanos , Peptídeos/química , Peptídeos/uso terapêutico , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , Proteínas de Soja/química , Proteínas de Soja/uso terapêutico
7.
Antioxidants (Basel) ; 10(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209224

RESUMO

Soybeans are rich in proteins and lipids and have become a staple part of the human diet. Besides their nutritional excellence, they have also been shown to contain various functional components, including isoflavones, and have consequently received increasing attention as a functional food item. Isoflavones are structurally similar to 17-ß-estradiol and bind to estrogen receptors (ERα and ERß). The estrogenic activity of isoflavones ranges from a hundredth to a thousandth of that of estrogen itself. Isoflavones play a role in regulating the effects of estrogen in the human body, depending on the situation. Thus, when estrogen is insufficient, isoflavones perform the functions of estrogen, and when estrogen is excessive, isoflavones block the estrogen receptors to which estrogen binds, thus acting as an estrogen antagonist. In particular, estrogen antagonistic activity is important in the breast, endometrium, and prostate, and such antagonistic activity suppresses cancer occurrence. Genistein, an isoflavone, has cancer-suppressing effects on estrogen receptor-positive (ER+) cancers, including breast cancer. It suppresses the function of enzymes such as tyrosine protein kinase, mitogen-activated kinase, and DNA polymerase II, thus inhibiting cell proliferation and inducing apoptosis. Genistein is the most biologically active and potent isoflavone candidate for cancer prevention. Furthermore, among the various physiological functions of isoflavones, they are best known for their antioxidant activities. S-Equol, a metabolite of genistein and daidzein, has strong antioxidative effects; however, the ability to metabolize daidzein into S-equol varies based on racial and individual differences. The antioxidant activity of isoflavones may be effective in preventing dementia by inhibiting the phosphorylation of Alzheimer's-related tau proteins. Genistein also reduces allergic responses by limiting the expression of mast cell IgE receptors, which are involved in allergic responses. In addition, they have been known to prevent and treat various diseases, including cardiovascular diseases, metabolic syndromes, osteoporosis, diabetes, brain-related diseases, high blood pressure, hyperlipidemia, obesity, and inflammation. Further, it also has positive effects on menstrual irregularity in non-menopausal women and relieving menopausal symptoms in middle-aged women. Recently, soybean consumption has shown steep increasing trend in Western countries where the intake was previously only 1/20-1/50 of that in Asian countries. In this review, I have dealt with the latest research trends that have shown substantial interest in the biological efficacy of isoflavones in humans and plants, and their related mechanisms.

8.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072216

RESUMO

Cheonggukjang (CGJ, fermented soybean paste), a traditional Korean fermented dish, has recently emerged as a functional food that improves blood circulation and intestinal regulation. Considering that excessive consumption of refined salt is associated with increased incidence of gastric cancer, high blood pressure, and stroke in Koreans, consuming CGJ may be desirable, as it can be made without salt, unlike other pastes. Soybeans in CGJ are fermented by Bacillus strains (B. subtilis or B. licheniformis), Lactobacillus spp., Leuconostoc spp., and Enterococcus faecium, which weaken the activity of putrefactive bacteria in the intestines, act as antibacterial agents against pathogens, and facilitate the excretion of harmful substances. Studies on CGJ have either focused on improving product quality or evaluating the bioactive substances contained in CGJ. The fermentation process of CGJ results in the production of enzymes and various physiologically active substances that are not found in raw soybeans, including dietary fiber, phospholipids, isoflavones (e.g., genistein and daidzein), phenolic acids, saponins, trypsin inhibitors, and phytic acids. These components prevent atherosclerosis, oxidative stress-mediated heart disease and inflammation, obesity, diabetes, senile dementia, cancer (e.g., breast and lung), and osteoporosis. They have also been shown to have thrombolytic, blood pressure-lowering, lipid-lowering, antimutagenic, immunostimulatory, anti-allergic, antibacterial, anti-atopic dermatitis, anti-androgenetic alopecia, and anti-asthmatic activities, as well as skin improvement properties. In this review, we examined the physiological activities of CGJ and confirmed its potential as a functional food.


Assuntos
Produtos Biológicos , Fermentação , Alimento Funcional , Glycine max , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Ingredientes de Alimentos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipolipemiantes/química , Hipolipemiantes/farmacologia , Estrutura Molecular , Avaliação Nutricional , Osteogênese/efeitos dos fármacos , Probióticos , Glycine max/química , Glycine max/metabolismo , Glycine max/microbiologia
9.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920015

RESUMO

In addition to providing nutrients, food can help prevent and treat certain diseases. In particular, research on soy products has increased dramatically following their emergence as functional foods capable of improving blood circulation and intestinal regulation. In addition to their nutritional value, soybeans contain specific phytochemical substances that promote health and are a source of dietary fiber, phospholipids, isoflavones (e.g., genistein and daidzein), phenolic acids, saponins, and phytic acid, while serving as a trypsin inhibitor. These individual substances have demonstrated effectiveness in preventing chronic diseases, such as arteriosclerosis, cardiac diseases, diabetes, and senile dementia, as well as in treating cancer and suppressing osteoporosis. Furthermore, soybean can affect fibrinolytic activity, control blood pressure, and improve lipid metabolism, while eliciting antimutagenic, anticarcinogenic, and antibacterial effects. In this review, rather than to improve on the established studies on the reported nutritional qualities of soybeans, we intend to examine the physiological activities of soybeans that have recently been studied and confirm their potential as a high-functional, well-being food.


Assuntos
Circulação Sanguínea/efeitos dos fármacos , Fibras na Dieta , Fibrinolíticos/uso terapêutico , Glycine max/química , Pressão Sanguínea/efeitos dos fármacos , Fibrinolíticos/química , Humanos , Intestinos/efeitos dos fármacos , Isoflavonas/química , Isoflavonas/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Fosfolipídeos/química , Fosfolipídeos/uso terapêutico
10.
Genes (Basel) ; 12(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546197

RESUMO

The cryoprotection of cell activity is a key determinant in frozen-dough technology. Although several factors that contribute to freezing tolerance have been reported, the mechanism underlying the manner in which yeast cells respond to freezing and thawing (FT) stress is not well established. Therefore, the present study demonstrated the relationship between DaMDHAR encoding monodehydroascorbate reductase from Antarctic hairgrass Deschampsia antarctica and stress tolerance to repeated FT cycles (FT2) in transgenic yeast Saccharomyces cerevisiae. DaMDHAR-expressing yeast (DM) cells identified by immunoblotting analysis showed high tolerance to FT stress conditions, thereby causing lower damage for yeast cells than wild-type (WT) cells with empty vector alone. To detect FT2 tolerance-associated genes, 3'-quant RNA sequencing was employed using mRNA isolated from DM and WT cells exposed to FT (FT2) conditions. Approximately 332 genes showed ≥2-fold changes in DM cells and were classified into various groups according to their gene expression. The expressions of the changed genes were further confirmed using western blot analysis and biochemical assay. The upregulated expression of 197 genes was associated with pentose phosphate pathway, NADP metabolic process, metal ion homeostasis, sulfate assimilation, ß-alanine metabolism, glycerol synthesis, and integral component of mitochondrial and plasma membrane (PM) in DM cells under FT2 stress, whereas the expression of the remaining 135 genes was partially related to protein processing, selenocompound metabolism, cell cycle arrest, oxidative phosphorylation, and α-glucoside transport under the same condition. With regard to transcription factors in DM cells, MSN4 and CIN5 were activated, but MSN2 and MGA1 were not. Regarding antioxidant systems and protein kinases in DM cells under FT stress, CTT1, GTO, GEX1, and YOL024W were upregulated, whereas AIF1, COX2, and TRX3 were not. Gene activation represented by transcription factors and enzymatic antioxidants appears to be associated with FT2-stress tolerance in transgenic yeast cells. RCK1, MET14, and SIP18, but not YPK2, have been known to be involved in the protein kinase-mediated signalling pathway and glycogen synthesis. Moreover, SPI18 and HSP12 encoding hydrophilin in the PM were detected. Therefore, it was concluded that the genetic network via the change of gene expression levels of multiple genes contributing to the stabilization and functionality of the mitochondria and PM, not of a single gene, might be the crucial determinant for FT tolerance in DaMDAHR-expressing transgenic yeast. These findings provide a foundation for elucidating the DaMDHAR-dependent molecular mechanism of the complex functional resistance in the cellular response to FT stress.


Assuntos
Congelamento/efeitos adversos , NADH NADPH Oxirredutases/genética , Saccharomyces cerevisiae/genética , Regulação Fúngica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Poaceae/enzimologia , Estresse Fisiológico/genética , Fatores de Transcrição/genética
11.
J Microbiol Biotechnol ; 31(3): 387-397, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33323676

RESUMO

There is growing interest in the production of microalgae-based, high-value by-products as an emerging green biotechnology. However, a cultivation platform for Oocystis sp. has yet to be established. We therefore examined the effects of bacterial culture additions on the growth and production of valuable compounds of the microalgal strain Oocystis sp. KNUA044, isolated from a locally adapted region in Korea. The strain grew only in the presence of a clear supernatant of Sphingomonas sp. KNU100 culture solution and generated 28.57 mg/l/d of biomass productivity. Protein content (43.9 wt%) was approximately two-fold higher than carbohydrate content (29.4 wt%) and lipid content (13.9 wt%). Oocystis sp. KNUA044 produced the monosaccharide fucose (33 µg/mg and 0.94 mg/l/d), reported here for the first time. Fatty acid profiling showed high accumulation (over 60%) of polyunsaturated fatty acids (PUFAs) compared to saturated (29.4%) and monounsaturated fatty acids (9.9%) under the same culture conditions. Of these PUFAs, the algal strain produced the highest concentration of linolenic acid (C18:3 ω3; 40.2%) in the omega-3 family and generated eicosapentaenoic acid (C20:5 ω3; 6.0%), also known as EPA. Based on these results, we suggest that the application of Sphingomonas sp. KNU100 for strain-dependent cultivation of Oocystis sp. KNUA044 holds future promise as a bioprocess capable of increasing algal biomass and high-value bioactive by-products, including fucose and PUFAs such as linolenic acid and EPA.


Assuntos
Microbiologia Industrial/métodos , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Sphingomonas/metabolismo , Biocombustíveis/microbiologia , Biomassa , Metabolismo dos Carboidratos , Meios de Cultura , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/biossíntese , Ácidos Graxos/biossíntese , Fucose/biossíntese , Lipídeos/biossíntese , Interações Microbianas , Biossíntese de Proteínas , República da Coreia , Sphingomonas/crescimento & desenvolvimento , Simbiose
12.
PeerJ ; 8: e9418, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32742771

RESUMO

Metagenome studies have provided us with insights into the complex interactions of microorganisms with their environments and hosts. Few studies have focused on microalgae-associated metagenomes, and no study has addressed aquatic microalgae and their bacterial communities in open pond raceways (OPRs). This study explored the possibility of using microalgal biomasses from OPRs for biodiesel and biofertilizer production. The fatty acid profiles of the biomasses and the physical and chemical properties of derived fuels were evaluated. In addition, the phenotype-based environmental adaptation ability of soybean plants was assessed. The growth rate, biomass, and lipid productivity of microalgae were also examined during mass cultivation from April to November 2017. Metagenomics analysis using MiSeq identified ∼127 eukaryotic phylotypes following mass cultivation with (OPR 1) or without (OPR 3) a semitransparent film. Of these, ∼80 phylotypes were found in both OPRs, while 23 and 24 phylotypes were identified in OPRs 1 and 3, respectively. The phylotypes belonged to various genera, such as Desmodesmus, Pseudopediastrum, Tetradesmus, and Chlorella, of which, the dominant microalgal species was Desmodesmus sp. On average, OPRs 1 and 3 produced ∼8.6 and 9.9 g m-2 d-1 (0.307 and 0.309 DW L-1) of total biomass, respectively, of which 14.0 and 13.3 wt% respectively, was lipid content. Fatty acid profiling revealed that total saturated fatty acids (mainly C16:0) of biodiesel obtained from the microalgal biomasses in OPRs 1 and 3 were 34.93% and 32.85%, respectively; total monounsaturated fatty acids (C16:1 and C18:1) were 32.40% and 31.64%, respectively; and polyunsaturated fatty acids (including C18:3) were 32.68% and 35.50%, respectively. Fuel properties determined by empirical equations were within the limits of biodiesel standards ASTM D6751 and EN 14214. Culture solutions with or without microalgal biomasses enhanced the environmental adaptation ability of soybean plants, increasing their seed production. Therefore, microalgal biomass produced through mass cultivation is excellent feedstock for producing high-quality biodiesel and biofertilizer.

13.
Front Plant Sci ; 11: 231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194605

RESUMO

An excess of reactive oxygen species (ROS) can cause severe oxidative damage to cellular components in photosynthetic cells. Antioxidant systems, such as the glutathione (GSH) pools, regulate redox status in cells to guard against such damage. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) catalyzes the glutathione-dependent reduction of oxidized ascorbate (dehydroascorbate) and contains a redox active site and glutathione binding-site. The DHAR gene is important in biological and abiotic stress responses involving reduction of the oxidative damage caused by ROS. In this study, transgenic Synechococcus elongatus PCC 7942 (TA) was constructed by cloning the Oryza sativa L. japonica DHAR (OsDHAR) gene controlled by an isopropyl ß-D-1-thiogalactopyranoside (IPTG)-inducible promoter (Ptrc) into the cyanobacterium to study the functional activities of OsDHAR under oxidative stress caused by hydrogen peroxide exposure. OsDHAR expression increased the growth of S. elongatus PCC 7942 under oxidative stress by reducing the levels of hydroperoxides and malondialdehyde (MDA) and mitigating the loss of chlorophyll. DHAR and glutathione S-transferase activity were higher than in the wild-type S. elongatus PCC 7942 (WT). Additionally, overexpression of OsDHAR in S. elongatus PCC 7942 greatly increased the glutathione (GSH)/glutathione disulfide (GSSG) ratio in the presence or absence of hydrogen peroxide. These results strongly suggest that DHAR attenuates deleterious oxidative effects via the glutathione (GSH)-dependent antioxidant system in cyanobacterial cells. The expression of heterologous OsDHAR in S. elongatus PCC 7942 protected cells from oxidative damage through a GSH-dependent antioxidant system via GSH-dependent reactions at the redox active site and GSH binding site residues during oxidative stress.

14.
Front Plant Sci ; 9: 1848, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619416

RESUMO

Cyanobacterial 2-Cys peroxiredoxin (thioredoxin peroxidase, TPX) comprises a family of thiol antioxidant enzymes critically involved in cell survival under oxidative stress. In our previous study, a putative TPX was identified using a proteomics analysis of rice (Oryza sativa L. japonica, OsTPX) seedlings exposed to oxidative stress. This OsTPX gene is structurally similar to the Synechococcus elongatus TPX gene in the highly conserved redox-active disulfide bridge (Cys114, Cys236) and other highly conserved regions. In the present study, the OsTPX gene was cloned into rice plants and S. elongatus PCC 7942 strain to study hydrogen peroxide (H2O2) stress responses. The OsTPX gene expression was confirmed using semi-quantitative RT-PCR and western blot analysis. The OsTPX gene expression increased growth under oxidative stress by decreasing reactive oxygen species and malondialdehyde level. Additionally, the OsTPX gene expression in S. elongatus PCC 7942 (OT) strain exhibited a reduced loss of chlorophyll and enhanced photosynthesis efficiency under H2O2 stress, thereby increasing biomass yields twofold compared with that of the control wild type (WT) strain. Furthermore, redox balance, ion homeostasis, molecular chaperone, and photosynthetic systems showed upregulation of some genes in the OT strain than in the WT strain by RNA-Seq analysis. Thus, OsTPX gene expression enhances oxidative stress tolerance by increasing cell defense regulatory networks through the cellular redox homeostasis in the rice plants and S. elongatus PCC 7942.

15.
Biotechnol Lett ; 39(10): 1499-1507, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28667417

RESUMO

OBJECTIVES: To improve the oxidative stress tolerance, biomass yield, and ascorbate/dehydroascorbate (AsA/DHA) ratio of Synechococcus elongatus PCC 7942 in the presence of H2O2, by heterologous expression of the dehydroascorbate reductase (DHAR) gene from Brassica juncea (BrDHAR). RESULTS: Under H2O2 stress, overexpression of BrDHAR in the transgenic strain (BrD) of S. elongatus greatly increased the AsA/DHA ratio. As part of the AsA recycling system, the oxidative stress response induced by reactive oxygen species was enhanced, and intracellular H2O2 level decreased. In addition, under H2O2 stress conditions, the BrD strain displayed increased growth rate and biomass, as well as higher chlorophyll content and deeper pigmentation than did wild-type and control strains. CONCLUSION: By maintaining the AsA pool and redox homeostasis, the heterologous expression of BrDHAR increased S. elongatus tolerance to H2O2 stress, improving the biomass yield under these conditions. The results suggest that the BrD strain of S. elongatus, with its ability to attenuate the deleterious effects of ROS caused by environmental stressors, could be a promising platform for the generation of biofuels and other valuable bioproducts.


Assuntos
Mostardeira/enzimologia , Oxirredutases/genética , Oxirredutases/metabolismo , Synechococcus/crescimento & desenvolvimento , Ácido Ascórbico/metabolismo , Biomassa , Clorofila/metabolismo , Clonagem Molecular , Ácido Desidroascórbico , Peróxido de Hidrogênio/metabolismo , Mostardeira/genética , Estresse Oxidativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Synechococcus/genética
16.
Biochem Biophys Res Commun ; 491(2): 403-408, 2017 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-28728845

RESUMO

The bacterial strain Pseudomonas sp. MC1 harbors an 81-kb metabolic plasmid, which encodes enzymes involved in the conversion of naphthalene to salicylate. Of these, the enzyme NahB (cis-dihydrodiol naphthalene dehydrogenase), which catalyzes the second reaction of this pathway, binds to various substrates such as cis-1,2-dihydro-1,2-dihydroxy-naphthalene (1,2-DDN), cis-2,3-dihydro-2,3-dihydroxybiphenyl (2,3-DDB), and 3,4-dihydro-3,4-dihydroxy-2,2',5,5'-tetrachlorobiphenyl (3,4-DD-2,2',5-5-TCB). However, the mechanism underlying its broad substrate specificity is unclear owing to the lack of structural information. Here, we determined the first crystal structures of NahB in the absence and presence of NAD+ and 2,3-dihydroxybiphenyl (2,3-DB). Structure analysis suggests that the flexible substrate-binding loop allows NahB to accommodate diverse substrates. Furthermore, we defined the initial steps of substrate recognition and identified the early substrate-binding site in the substrate recognition process through the complex structure with ligands.


Assuntos
Compostos de Bifenilo/química , Catecóis/química , Naftóis/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Bifenilos Policlorados/química , Pseudomonas/química , Motivos de Aminoácidos , Sítios de Ligação , Compostos de Bifenilo/metabolismo , Catecóis/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Naftóis/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Bifenilos Policlorados/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Pseudomonas/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
17.
J Plant Physiol ; 215: 39-47, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28527337

RESUMO

Reactive oxygen species, which increase under various environmental stresses, have deleterious effects on plants. An important antioxidant, glutathione, is used to detoxify reactive oxygen species in plant cells and is mainly produced by two enzymes: gamma-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GS). To evaluate the functional roles of the glutathione synthetase gene (OsGS) in rice, we generated four independent transgenic rice plants (TG1-TG4) that overexpressed OsGS under the control of the constitutively expressed OsCc1 promoter. When grown under natural paddy field conditions, the TG rice plants exhibited greater growth development, higher chlorophyll content, and higher GSH/GSSH ratios than control wild-type (WT) rice plants. Subsequently, the TG rice plants enhanced redox homeostasis by preventing hydroperoxide-mediated membrane damage, which improved their adaptation to environmental stresses. As a result, TG rice plants improved rice grain yield and total biomass following increases in panicle number and number of spikelets per panicle, despite differences in climate during the cultivation periods of 2014 and 2015. Overall, our results indicate that OsGS overexpression improved redox homeostasis by enhancing the glutathione pool, which resulted in greater tolerance to environmental stresses in the paddy fields.


Assuntos
Oryza/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
19.
Sci Rep ; 6: 33903, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27652777

RESUMO

Ascorbic acid (AsA) maintains redox homeostasis by scavenging reactive oxygen species from prokaryotes to eukaryotes, especially plants. The enzyme monodehydroascorbate reductase (MDHAR) regenerates AsA by catalysing the reduction of monodehydroascorbate, using NADH or NADPH as an electron donor. The detailed recycling mechanism of MDHAR remains unclear due to lack of structural information. Here, we present the crystal structures of MDHAR in the presence of cofactors, nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+), and complexed with AsA as well as its analogue, isoascorbic acid (ISD). The overall structure of MDHAR is similar to other iron-sulphur protein reductases, except for a unique long loop of 63-80 residues, which seems to be essential in forming the active site pocket. From the structural analysis and structure-guided point mutations, we found that the Arg320 residue plays a major substrate binding role, and the Tyr349 residue mediates electron transfer from NAD(P)H to bound substrate via FAD. The enzymatic activity of MDHAR favours NADH as an electron donor over NADPH. Our results show, for the first time, structural insights into this preference. The MDHAR-ISD complex structure revealed an alternative binding conformation of ISD, compared with the MDHAR-AsA complex. This implies a broad substrate (antioxidant) specificity and resulting greater protective ability of MDHAR.

20.
PLoS One ; 11(7): e0158841, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27392090

RESUMO

Monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) is an important enzyme for ascorbate recycling. To examine whether heterologous expression of MDHAR from Oryza sativa (OsMDHAR) can prevent the deleterious effects of unfavorable growth conditions, we constructed a transgenic yeast strain harboring a recombinant plasmid carrying OsMDHAR (p426GPD::OsMDHAR). OsMDHAR-expressing yeast cells displayed enhanced tolerance to hydrogen peroxide by maintaining redox homoeostasis, proteostasis, and the ascorbate (AsA)-like pool following the accumulation of antioxidant enzymes and molecules, metabolic enzymes, and molecular chaperones and their cofactors, compared to wild-type (WT) cells carrying vector alone. The addition of exogenous AsA or its analogue isoascorbic acid increased the viability of WT and ara2Δ cells under oxidative stress. Furthermore, the survival of OsMDHAR-expressing cells was greater than that of WT cells when cells at mid-log growth phase were exposed to high concentrations of ethanol. High OsMDHAR expression also improved the fermentative capacity of the yeast during glucose-based batch fermentation at a standard cultivation temperature (30°C). The alcohol yield of OsMDHAR-expressing transgenic yeast during fermentation was approximately 25% (0.18 g·g-1) higher than that of WT yeast. Accordingly, OsMDHAR-expressing transgenic yeast showed prolonged survival during the environmental stresses produced during fermentation. These results suggest that heterologous OsMDHAR expression increases tolerance to reactive oxygen species-induced oxidative stress by improving cellular redox homeostasis and improves survival during fermentation, which enhances fermentative capacity.


Assuntos
Expressão Gênica , NADH NADPH Oxirredutases , Organismos Geneticamente Modificados , Oryza/genética , Proteínas de Plantas , Saccharomyces cerevisiae , Estresse Fisiológico , Etanol/metabolismo , NADH NADPH Oxirredutases/biossíntese , NADH NADPH Oxirredutases/genética , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo , Oryza/enzimologia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...